Artículos sobre ciencia y tecnología de Mauricio-José Schwarz publicados originalmente en El Correo y otros diarios del Grupo Vocento

Así está hecha la estación espacial internacional

Desde el año 2000 hay seres humanos habitando de modo permanente la estación espacial internacional, un logro tecnológico singular en el que han confluido conocimientos, voluntarios... y los más diversos materiales.

La Estación Espacial Internacional tomada desde el
transbordador espacial en 2009.
(Foto D.P. NASA vía Wikimedia Commons)
En 1998 se lanzaron y empezaron a montar los primeros componentes de la estación espacial internacional, ISS por su nombre en inglés. Era la culminación, y al mismo tiempo el principio, de uno de los más grandes esfuerzos compartidos por distintos países en la exploración espacial a través de las agencias espaciales de Estados Unidos, Canadá, Rusia, Europa y Japón.

La ISS está formada por módulos fabricados por distintos países en los quevive y trabaja la tripulación, como los laboratorios y módulos de servicio, zonas de carga y observatorios, unidos entre sí con piezas llamadas “nodos”. En ellos se acoplan las naves que llevan y traen a la estación personal y suministros.

Tanto los metales como todos los demás componentes de la ISS han tenido que responder a estándares extremadamente estrictos en cuanto a aspectos como su resistencia a la corrosión, su durabilidad y su comportamiento en caso de incendio, lo que incluye que no sean inflamables, que no produzcan chispas accidentalmente y que al someterse a altas temperaturas no emitan gases tóxicos, ya que debe proteger al máximo a los habitantes de la estación, que no pueden abandonarla de emergencia.

Y, además, deben ser tan ligeros como sea posible, ya que poner en órbita cada kilogramo de material tiene un elevado coste. Cuando se comenzó a construir la ISS, se calcula que ese coste era de alrededor de 24.000 dólares.

Ya terminada, la ISS tiene un peso de 450 toneladas. O lo tendría en tierra, por supuesto, no en su situación, la llamada “órbita terrestre baja”, a unos 400 km de la superficie del planeta. Y todo ese colosal peso, algo menos del que tiene un Boeing 747, tuvo que ser transportado desde tierra.

Lo primero que vemos en la ISS es un recubrimiento exterior que tiene precisamente por objeto protegerla de choques de pequeños objetos. Es el escudo MM/OD, siglas de “micrometeoritos y desechos orbitales”. En los módulos fabricados por Estados Unidos el escudo es una hoja de aluminio de 1,3 mm de espesor, separada 10 centímetros del casco de presión, formado por aluminio más resistente y de más de 3 mm de espesor, incluso 7 mm en algunas zonas más expuestas.

Ese espacio de 10 centímetros está ocupado por varias capas de un tejido cerámico de gran resistencia, el nextel, y una segunda capa de un tejido similar al kevlar, material utilizado para fabricar chalecos antibalas y otras protecciones. Esta disposición tiene por objeto que cuando el escudo exterior sea atravesado por un desecho orbital, éste se rompa en pequeños fragmentos que sean absorbidos o ralentizados por los tejidos para llegar al casco de presión en forma de una nube de partículas, disipando la energía del choque a lo largo de un área mucho mayor.

Otros módulos utilizan otros diseños. Los rusos, por ejemplo, emplean una estructura de panal de aluminio sobre una segunda capa de plástico para disipar los choques y que es, se calcula, aún más eficiente.

Para todo efecto práctico, todos los módulos presurizados, que son de forma cilíndrica, actúan como una lata de aluminio para refrescos a gran escala.

El vidrio del que están hechas las ventanas de la ISS es, igual que el de nuestras ventanas, fundamentalmente de silicio, fusionado con otra variedad de vidrio de silicio y trióxido de boro para fomar el material llamado “borosilicato”, un vidrio mucho más resistente y que se contrae y expande menos que el común al verse sometido a cambios de temperatura. La ventana en sí está formada por cuatro capas de vidrio que tienen un espesor de hasta 3 centímetros: una exterior para protección contra choques de pequeños objetos, dos gruesos paneles de vidrio de presión, uno de los cuales es sólo protección adicional pues según los cálculos uno solo de ellos bastaría para garantizar la seguridad de la nave, y finalmente un panel interno resistente a rayaduras y otras marcas. Las ventanas tienen además la protección adicional de contraventanas, al estilo de las casas más rústicas, fabricadas con aluminio, Nextel y Kevlar.

El brazo robótico europeo, construido por la Agencia Espacial Europea, permite la manipulación y traslado de pequeñas cargas, trabajando con los astronautas cuando están realizando caminatas extravehiculares, e incluso para transportarlos a los lugares del exterior donde tienen que trabajar, ahorrándoles esfuerzo y tiempo. También sirve para inspeccionar, instalar y reemplazar los paneles solares. Sus componentes principales son tubos de fibra de carbono, como la utilizada en los autos de Fórmula 1, unidos por segmentos de aluminio, terminando en ambos extremos en “manos” o efectores metálicos. También el Canadarm2, brazo robótico construido por la organización espacial canadiense. El tercer brazo robótico de la ISS, es de termoplástico con fibra de carbono, en 19 capas superpuestas para obtener la mayor resistencia posible. El poco peso y, por tanto, poca inercia de estos brazos robóticos son indispensables porque, a diferencia de otros manipuladores y grúas de la ISS, éstos no están fijos en una base, sino que se pueden desplazar por el exterior de la ISS fijando una mano en agarraderas especiales mientras mueven la otra, ya sea para sus manipulaciones o para avanzar a la siguiente agarradera, como orugas moviéndose sobre la estación.

A ambos lados del conjunto central de módulos de la ISS se encuentran unos enormes conjuntos de paneles solares sostenidos que le proporcionan la energía necesaria para accionar sus diversos sistemas y le dan su aspecto distintivo. La Estructura de Armazón Integrada (ITS en inglés) está formada por tubos de aluminio extruido que además de sostener las celdillas fotovoltaicas albergan el sistema de distribución eléctrica, además del sistema de refrigeración, en una interesante paradoja: en el frío espacial casi absoluto, la ISS captura energía del sol pero la convierte en calor en su interior con el funcionamiento del equipo e incluso de los astronautas y es fundamental irradiar ese calor al espacio para mantener una temperatura adecuada en la estación.

Otros materiales

Además del aluminio y los plásticos reforzados con fibra de carbono, los materiales más abundantes en la ISS son el hidruro de níquel que utilizan las baterías de la estación, plásticos, titanio para la fontanería, que permite recuperar todos los desechos y el vapor de agua para reciclarlos, magnesio, elastómeros (polímeros elásticos como la goma) y el cloruro de polivinilo (PVC), todos ellos producidos y aplicados bajo estrictas especificaciones.