Levitación de un imán sobre un superconductor. (Foto CC de Mariusz.stepien vía Wikimedia Commons) |
Su historia comienza hacia 1720. Un astrónomo aficionado y científico que experimentaba con electricidad estática, descubrió que ésta no sólo estaba en el vidrio que frotaba para producirla y atraer objetos pequeños. También el corcho podía hacerlo. Conectó al corcho una serie de varitas, y luego un hilo, observando que la “virtud eléctrica” se transmitía por ellos y seguía atrayendo objetos pequeños. Pronto estaba tendiendo hilos en las casas de sus conocidos y probando distintos materiales, hasta conseguir que su electricidad estática viajara unos 250 metros. Esto también le permitió determinar que algunos materiales eran conductores y otros aislantes.
Stephen Gray, había dado un salto enorme entre quienese trabajaban con la electricidad desde 1600, cuando el también británico William Gilbert la había descrito y nombrado.
La conducción eléctrica no se refiere sólo a la corriente que alimenta nuestros aparatos y dispositivos. Por ejemplo, el manejo de pequeñas corrientes eléctricas en los materiales semiconductores descritos por Michael Faraday en 1833, como el silicio, ha permitido la existencia de todo el universo de la informática y las telecomunicaciones.
¿De qué depende que un material sea conductor, semiconductor o aislante? Dado que la electricidad no es más que una corriente de electrones en movimiento, los conductores serán los materiales que permitan que los electrones se muevan con mayor libertad, algo para lo cual son ideales metales como el cobre, el aluminio o el oro.
Los aislantes impiden el flujo de electricidad a lo largo de un material, actuando de hecho como barreras, por la forma en que están unidas sus moléculas, como ocurre con el látex o los plásticos. Los semiconductores, por su parte, están en un punto intermedio entre los otros dos. La capacidad de conducción es inversamente proporcional a la resistencia que tiene un material al flujo de corriente.
El salto al superconductor
La resistencia eléctrica de todos los materiales es lo que permite que la corriente eléctrica, al ser obstaculizada por ella, se convierta en luz en una bombilla incandescente, en calor en un hornillo, en ondas electromagnéticas dentro de un microondas o en un campo de inducción en grandes hornos de acero o en cocinas de inducción.
Pero la resistencia eléctrica es también un problema: la corriente eléctrica se va debilitando y convirtiendo en otras formas de energía, principalmente calor, conforme va recorriendo cualquier material, por buen conductor que sea. Transportar energía eléctrica implica una pérdida de corriente.
En 1911, el físico holandés Heike Kamerlingh Onnes hizo un descubrimiento tan trascendente como el de la conducción eléctrica de Stephen Gray. Onnes probaba la conducción eléctrica del mercurio a distintas temperaturas, pues se sabía que la resistencia de los materiales bajaba proporcionalmente a la temperatura. Pero al enfriar el mercurio a -269 grados centígrados, la temperatura del helio líquido, su resistencia cayó súbicamente a cero, simplemente desapareció, y el mercurio se convirtió en algo nuevo: un superconductor capaz de transmitir electricidad sin pérdidas. Así, si se aplica corriente a un anillo superconductor, ésta puede dar vueltas eternamente a su alrededor. El descubrimiento le valió a Onnes el Premio Nobel de física de 1913.
¿Para qué sirven los superconductores? En los años siguientes, multitud de investigadores realizaron trabajos con distintos materiales para determinar cómo y a qué temperatura se podrían convertir en superconductores. Entre ellos, dos alemanes descubrieron que los superconductores repelían los campos magnéticos en movimiento. Lo que esto significaba en la práctica era que se podía hacer que un imán levitara sobre un superconductor.
Esta propiedad, llamada “maglev” o levitación magnética, fue una de las primeras aplicaciones de los superconductores, en trenes cuyas vías están formadas de bobinas que crean un campo magnético que repele unos imanes de la parte inferior del tren y lo hace avanzar flotando o levitando sobre las vías, permitiéndole moverse con seguridad y suavidad a velocidades de hasta 500 km/h. Si los imanes son de superconductores enfriados con nitrógeno líquido, que es de coste relativamente bajo, se obtiene una mayor eficiencia en el uso de la energía.
Entre las aplicaciones de los superconductores se cuentan dispositivos como circuitos digitales de gran velocidad para tener ordenadores más rápidos, filtros de microondas que se pueden emplear en bases de telefonía móvil, motores y generadores eléctricos con un gasto de energía mucho menos que los convencionales y enormes electroimanes de gran potencia que igual se utilizan en los escáneres médicos que en detectores de partículas como los que emplea el Gran Colisionador de Hadrones (LHC) del CERN.
El LHC es, esencialmente, un par de grandes tubos circulares en cuyo interior se disparan protones que se aceleran utilizando electroimanes que también les obligan a curvar su trayectoria hasta, finalmente, colisionar a velocidades cercanas a las de la luz. El enorme dispositivo emplea 1232 electroimanes principales, cada uno de ellos de 15 metros de longitud y con un peso de 35 toneladas. Otros gigantescos electroimanes superconductores se utilizan en los detectores del LHC para poder percibir y registrar las colisiones que están desvelándonos algunos de los secretos del mundo subatómico.
Una de las búsquedas más intensas en la física de los superconductores es la búsqueda de materiales que puedan exhibir propiedades superconductivas a temperaturas “altas”. Actualmente se han desarrollado superconductores capaces de funcionar a -139 ºC. El santo grial de esta búsqueda sería el mítico “superconductor a temperatura ambiente”, que haría más por la conservación de energía en el mundo que ninguna otra tecnología imaginable.
¿Y el escáner?Los escáneres de diagnóstico como la resonancia magnética están formados por un “donut” o anillo donde entra el paciente y que es un electroimán en cuyo interior hay una bobina con helio e hidrógeno líquido con una fuerza magnética 60 mil veces más potente que la de la Tierra que obliga a que los protones del agua de nuestro cuerpo se alineen según el campo magnético. Al quitar el campo, los protones vuelven a su posición normal emitiendo pequeñas cantidades de energía que son interpretadas como detallados gradientes de luz en las imágenes de la resonancia. |