Artículos sobre ciencia y tecnología de Mauricio-José Schwarz publicados originalmente en El Correo y otros diarios del Grupo Vocento

Neptuno, el planeta anunciado

El menos visitado de los planetas de nuestro sistema solar, el más lejano del sol, se descubrió sólo después de que cuidadosos cálculos matemáticos demostraran que debía existir.

Neptuno, fotografiado por la sonda espacial Voyager.
(Foto DP Nasa/JPL vía Wikimedia Commons)
Una de las descripciones más perdurables de nuestro planeta nos la ofreció el astrónomo y divulgador Carl Sagan. En 1990, pidió a la NASA que girara la cámara de la sonda Voyager 1 cuando estaba a más de 6 mil millones de kilómetros de la Tierra, y tomara una foto de nuestro hogar planetario. El resultado es una fotografía que se conoció como el “punto azul pálido”.

El color distintivo de nuestro planeta lo comparte con el azul claro de Urano y, sobre todo, con el profundo color azul de Neptuno, el planeta más alejado del sol, el último de los que conforman nuestro sistema solar. (Plutón se ha reclasificado como “planeta enano” después de que se encontraron otros cuerpos incluso mayores que él en el llamado “cinturón de Kuiper”, formado por millones de pequeños cuerpos celestes.)

Pero Neptuno es azul no debido al agua. No puede haber agua en estado líquido en ese lejano planeta, un gigante de gas cuya atmósfera está formada principalmente por hidrógeno, helio y metano, un gas formado por carbono e hidrógeno. Este metano es responsable, al menos en parte, del color del planeta, pues absorbe la luz roja y refleja la luz verde.

Sin embargo, los astrónomos no descartan que pueda haber otros compuestos, aún no identificados, que participen en el notable color de Neptuno, y que lo hacen mucho más profundo que el de Urano.

Debajo de la atmósfera, hay un océano formado por una mezcla líquida de hielos de agua, amoníaco y metano, y en su centro existe un núcleo de hierro que, se calcula, tiene una masa algo mayor que la de la Tierra. Pero, en su conjunto, Neptuno tiene 17 veces la masa de nuestro planeta en un volumen 58 veces mayor. Esto lo convierte en el tercer planeta más masivo, después de Júpiter y Saturno. Y al ser el planeta más lejano del sol es también el que tiene la órbita más prolongada: tarda 165 años en dar una vuelta alrededor del sol, de modo que desde su descubrimiento completó una órbita apenas en 2011.

Pero al acercarnos a Neptuno vemos que su color no es uniforme, que hay franjas de distintas tonalidades que hablan de tremendas turbulencias con vientos de hasta 2.100 kilómetros por hora y, cuando lo visitó la sonda Voyager 2, encontró una mancha de azul más oscuro, similar a la gran mancha roja de Júpiter y formada también por una colosal tormenta. En Neptuno, esas manchas azul oscuro aparecen y desaparecen cada pocos años.

Neptuno también tiene otras dos características que lo distinguen. Primero, como los otros gigantes de nuestro Sistema Solar, está rodeado por anillos, nueve de ellos y muy tenues. El más exterior muestra tres agrupamientos de material que destacan, y que se han llamado Libertad, Igualdad y Fraternidad, como homenaje a la revolución francesa. En segundo lugar, el campo magnético de Neptuno está inclinado a 47 grados del eje de su rotación, cuando en los demás planetas, salvo en Urano, el campo magnético está mucho más cerca del eje de giro.

Neptuno tiene 13 lunas conocidas hasta la fecha, algunas que tienen sus órbitas dentro de los propios anillos del planeta.

Descubrimiento y estudio

El 27 y 28 de diciembre de 1612, Galileo Galilei fue el primer ser humano que vio al planeta que hoy conocemos como Neptuno. Pero debido a su órbita, en ese momento parecía estar en un mismo lugar en los cielos, como las estrellas, cerca de Júpiter, y el genio florentino así lo consignó en sus notas. Precisamente lo que distinguía a los planetas desde la antigüedad era que se movían respecto del fondo de estrellas que parecían inmóviles. “Planeta” significa, precisamente, vagabundo, y cuando Galileo se encontró con Neptuno, no parecía vagabundear.

En 1821, el astrónomo francés Alexis Bouvard notó que las observaciones astronómicas de Urano se desviaban de los cálculos que había hecho sobre la órbita de ese planeta. Sus matemáticas eran sólidas, pues en 1808 había publicado tablas muy precisas sobre las órbitas de Saturno y Júpiter. El que sus cálculos fallaran con Urano le indicaban que “algo” estaba ejerciendo una atracción gravitatoria sobre el planeta, desviándolo de la órbita que debería seguir, y ese “algo”, claro, no podía ser sino otro planeta aún no descubierto, un octavo miembro de nuestro sistema solar.

Con la publicación del razonamiento de Bouvard se inició una pequeña carrera por encontrar al octavo planeta del sistema solar. Los antiguos conocían 6, y desde que se inició la observación astronómica sólo se había encontrado uno más, precisamente Urano, descubierto por el astrónomo William Herschel en 1781.

Sin embargo, tuvio que pasar un cuarto de siglo para que el planeta cuya masa causaba estas varicaciones. El problema era saber hacia dónde había que mirar. Otro astrónomo francés, Urbain Le Verrier, utilizó las posiciones observadas de Urano y un complejo desarrollo matemático calculando las pequeñas discrepancias de Urano, utilizando las leyes de la gravitación de Newton. El 31 de agosto de 1846, Le Verrier informó a la Academia Francesa dónde señalaban sus cálculos que debería estar el nuevo planeta (el logro es compartido por el británico John Couch Adams, quien dos días después envió por correo a la Royal Society sus propios cálculos, igualmente precisos). El 18 de septiembre, le envió sus datos a su colega, el astrónomo alemán Johann Gottfried Galle, quien los recibió el 23. Esa misma noche, Galle orientó el telescopio del Observatorio de Berlín hacia el punto previsto por Le Verrier y encontró a Neptuno.

Desde entonces, lo que hemos aprendido de Neptuno ha sido fundamentalmente por medio de diversos telescopios y gracias a la única sonda que ha visitado al gigante azul. En 1989 el Voyager 2, el mismo que un año después tomaría la fotografía del “punto azul pálido”, pasó a menos de 5.000 kilómetros de la capa superior de nubes de Neptuno, enviándonos una serie de fotografías del planeta y de su luna, Tritón.

Cualquier misión planeada para estudiar a Neptuno tardaría 12 años en llegar a su destino. Ése es uno de los motivos por los cuales en este momento ni la NASA ni la ESA tienen previsto ningún intento por enviar una sonda a estudiar más a fondo al planeta límite de nuestro sistema solar.

Tritón

La más grande luna de Neptuno es también la mayor de su pequeña constelación de satélites: Tritón. Es una de las sólo tres lunas del sistema solar que posee su propia atmósfera, pese a tener solamente dos tercios del tamaño de nuestra propia luna. Pese a las bajísimas temperaturas que privan en Tritón, cuenta con géiseres activos que lanzan el nitrógeno gaseoso que compone su atmósfera y crea vientos que dejan marcas en su gélida superficie.

Antivacunas: un desastre que está ocurriendo

La desinformación científica y el miedo están protagonizando cada vez más brotes de enfermedades que se creían erradicadas en occidente.

Estatua conmemorativa de la campaña mundial de vacunación
contra la viruela que erradicó esta enfermedad en 1980.
(Foto CC de Thorkild Tylleskar, vía Wikimedia Commons)
La vacunación es probablemente la más exitosa intervención médica de la historia humana.

Enfermedades que eran comunes e inevitables se han vuelto prevenibles, una de las enfermedades que más vidas humanas se cobraba año tras año, la viruela, fue totalmente erradicada en 1980. Y se investiga para prevenir y curar con vacunas enfermedades como la malaria o el VIH/SIDA.

Sin embargo, desde que Edward Jenner introdujo las vacunas en el siglo XVIII, ha habido oposición a ellas por diversos motivos, desde los religiosos hasta la ignorancia y la desinformación maliciosa.

Resulta asombroso que, pese a los beneficios probados y comprobados de las vacunas, y a la seguridad una y otra vez confirmada de su aplicación, en el siglo XXI sigue habiendo una propaganda antivacunas que está provocando el resurgimiento de algunas enfermedades.

Quienes nunca sufrieron esas enfermedades, protegidos por las vacunas, las consideran “leves” o “tolerables”, como el sarampión o la tos ferina, aunque no sólo hacen sufrir a quienes las padecen, principalmente niños, sino que tienen el potencial de causar la muerte y daños de por vida en algunos casos. Sólo en 2013, el sarampión mató todav´ía a más de 158.000 niños en el mundo, una cifra escalofriante.

El moderno movimiento antivacunas empezó en 1998, cuando el médico británico Andrew Wakefield publicó un estudio que relacionaba la vacuna triple vírica (sarampión, rubéola y paperas) con el autismo.

El riesgo que denunciaba era grave, y otros investigadores de inmediato intentaron confirmar los resultados. Sin embargo, nadie lo consiguió. Empezaron a sumarse decenas de estudios que no hallaban la correlación y sugerían que Wakefield había cometido un simple error. Pero, en 2004, ante la creciente evidencia de prácticas inadecuadas, diez de los investigadores que habían firmado el estudio se retractaron de él, y una investigación periodística descubrió que Wakefield no sólo había recibido dinero de abogados de familias que estaban demandando a empresas productoras de vacunas, sino que él mismo había solicitado una patente para un supuesto sustituto de la vacuna.

Wakefield no había cometido un error. Se comprobó que había falsificado los datos del estudio. En 2007, el Consejo Médico General del Reino Unido le retiró la licencia para practicar la medicina y, en 2010, la revista médica “The Lancet”, que había publicado el estudio original, decidió retractarlo.

Sin embargo, en la percepción popular, animada por la militancia de personas que a su sinceridad sumaban una enorme ignorancia sobre las vacunas y los estudios que sustentan su valor para salvar vidas.

Y el resultado ha sido que en muchos países están resurgiendo enfermedades prevenibles, con el sufrimiento que implican y con números crecientes de víctimas mortales o que sufren secuelas de por vida, como los daños cerebrales permanentes que puede ocasionar el sarampión.

Incluso políticos y personajes que deberían preocuparse por expresar opiniones bien informadas y basadas en estudios científicos sólidos han contribuido al miedo contra distintas vacunas, poniendo en riesgo a quienes podrían beneficiarse de ellas pese a que no hay estudios que indiquen que representan ningún riesgo especial o preocupante.

Los movimientos antivacunas ponen en riesgo avances innegables como la muy reciente declaración de erradicación de la poliomielitis de la India, donde había sido tradicionalmente endémica.

El resultado: cada vez más brotes de sarampión, tosferina o paperas en los últimos años, con la constante de que algunos afectados no habían sido vacunados por la mal aconsejada decisión de sus padres. En España en 2013 los casos de paperas fueron más del doble de 2012, en 2011 se denunció un repunte en los casos de tos ferina y a fines de 2013 se supo de brotes de varicela, principalmente en Madrid. La situación es más grave en países como Gran Bretaña y Estados Unidos.

La inmunidad de grupo

En la década de 1970, cuando se empezó a vacunar a niños contra las bacterias causantes de la neumonía y de meningitis (pneumococos y Haemophillus), se hicieron estudios con grandes cantidades de personas para determinar los efectos de las campañas. Y se descubrió que, conforme más niños eran vacunados, iban disminuyendo también las infecciones en adultos a los que ya no se podía vacunar con eficacia y en otras personas susceptibles a estas afecciones.

¿Qué ocurría? Que las personas no inmunizadas tenían menos probabilidades de encontrarse con una persona infectada que le pudiera contagiar la enfermedad, de modo que quedaban protegidos indirectamente por las campañas de vacunación.

A esto se le llama “inmunidad de grupo”.

La vacunación no es, pese a todo, una Hay niños que tienen deficiencias en el sistema inmune y no pueden ser vacunados. Lo mismo pasa con una pequeña cantidad de niños que son alérgicos a alguno de los componentes de las vacunas. Y además las vacunas sólo son eficaces en un 80-90% de los casos. Es decir, entre uno y dos de cada 10 niños vacunados no quedarán inmunizados ante la enfermedad y, si se les expone a cualquier persona en etapa contagiosa, enfermarán.

Pero si la mayoría de la gente a su alrededor está vacunada, es muy poco probable que se contagien. La gente inmunizada a su alrededor sirve como escudo que lo protege de los agentes infecciosos.

La inmunidad de grupo, además, se hace más relevante hoy en día, cuando la gente tiene una movilidad mayor que nunca en la historia, de país en país, de continente en continente. No es difícil que alguien infectado con sarampión o, mucho más grave, poliomielitis, viaje de países donde aún es común la enfermedad a países donde ya se considera erradicada. Por ejemplo, en España no ha habido casos de polio desde 1989. Pero tampoco los había habido en Siria desde 1999, y a fines de 2013 se habían confirmado diez casos de polio en el país, sumido en una terrible guerra donde es posible que algunos combatientes extranjeros trajeran la polio desde países como Afganistán o Pakistán, donde sigue siendo un problema. No es impensable que se trajera la enfermedad desde Siria, y entonces sólo la inmunidad de grupo impediría que se extendiera entre quienes no están inmunizados.

Por eso se dice que vacunar a un niño es también vacunar a los demás.

En la mira: la malaria y otros males

Estudios publicados en 2103 indican que una vacuna contra la malaria, un antiguo sueño de los inmunólogos, consiguió reducir a la mitad los casos en niños en Sudáfrica. De confirmarse los resultados, la esperada vacuna contra el mayor asesino de niños del mundo podría llegar a las farmacias en 2015.

El grafeno: una maravilla en su lápiz

Tiene sólo un átomo de espesor, está formado por uno de los elementos más comunes del universo y aún no tiene diez años de edad... pero tiene el potencial de cambiar profundamente nuestras vidas.

Un trozo de grafito (arriba), un transistor de grafeno (abajo) y
el dispensador de cinta adhesiva de Andre Gein con el cual
se logró aislar el grafeno en 2004. (Foto D.P. de Gabriel
Hildebrand, Museo del Nobel, vía Wikimedia Commons)
No pasa un mes sin que las noticias científicas traigan nuevas posibles aplicaciones del grafeno, una forma de carbono aislada en 2004 por Andre Geim y Konstantin Novoselov en la Universidad de Manchester, Inglaterra.

El grafeno es más fuerte que el diamante, es uno de los mejores conductores del calor conocidos, conduce la electricidad 20 veces mejor que el cobre y tiene otras muchas propiedades singulares.

El carbono es la base de toda la vida, y uno de los elementos más sorprendentes, gracias a su enorme capacidad de unirse con muchos otros elementos y consigo mismo, formando millones de compuestos, entre ellos las proteínas que nos forman, las vitaminas, las hormonas, las enzimas o el ADN que transmite la información genética de generación en generación. Somos esencialmente carbono.

Los átomos de carbono se pueden unir entre sí de muy distintas formas. En estructuras irregulares es el carbón común, llamado carbono amorfo. Cuando forma una estructura en la cual cada átomo está unido a otros cuatro formando tetraedros que a su vez componen una sólida red tridimensional, es el diamante, el mineral natural más duro que existe

Hay otras formas en que se pueden unir los átomos de carbono. Los fulerenos son formaciones esféricas similares a las estructuras geodésicas creadas por Buckminster Fuller (de ahí su nombre). Los nanotubos son largos cilindros formados por una red hexagonal de un átomo de espesor, o la nanoespuma de carbono.

Y la forma más conocida y común del carbono es el grafito, que conocemos principalmente por nuestros lápices. Al escribir vamos depositando carbono en el papel. El grafito está formado por capas de una estructura regular en forma de malla hexagonal, como las utilizadas comúnmente en las jaulas de aves de corral donde cada átomo está unido a otros tres.

El grafeno es una capa de grafito de un solo átomo de espesor que había sido propuesta como una posibilidad teórica en 1947. En 1984 había especulaciones teóricas sobre la enorme conductividad eléctrica que tendría de existir. Y en 1987 se utilizó por primera vez la palabra “grafeno”.

Obtener una capa de grafito individual era un desafío tecnológico enorme, y varios grupos de investigadores empezaron a intentarlo desde la década de 1970. Además, nadie sabía si realmente se podría conseguir esa capa o resultaría totalmente inestable y se colapsaría de inmediato en alguna de los otras formas como nanotubos o fulerenos.

Según relatan Geim y Novoselov, empleaban distintos procedimientos tecnológicamente complejos para tratar de separar una capa de una muestra de grafito, con resultados poco alentadores: las más delgadas tenían unos 10.000 átomos de espesor. En el laboratorio, utilizaban cinta adhesiva común y corriente para limpiar las superficies de las muestras de grafito que utilizaban en sus experimentos. Un colega ucraniano, Oleg Shklyarevskii señaló que las escamas de grafito que quedaban en la cinta adhesiva parecían más finas que las obtenidas con procedimientos de laboratorio. Geim y Novoselov empezaron a utilizar la cinta adhesiva para obtener grafeno, algo que consiguieron en 2003, publicando sus resultados en 2004.

El grafeno no era inestable, era estable y resultaba un material extremadamente fuerte. Y, como habían propuesto los teóricos, tenía una enorme capacidad de conducción de cargas debido a un efecto cuántico llamado “de Hall”. Esa fue la primera característica del nuevo material, que era además prácticamente transparente.

En realidad, como se ha visto después, cada vez que escribimos con un lápiz de grafito producimos un poco de grafeno... los trazos oscuros implican que hay muchas capas de grafito, los más claros nos dicen que hay menos capas y, por allí ocultas, hasy algunas escamas de este material. Pero entonces no se sabía.

Desde su descubrimiento, la exploración de las posibilidades del grafeno lo han convertido en uno de los materiales más rápidamente desarrollados de la historia, lo cual además promovió que en 2010, sólo seis años después de que su logro, Andre Geim y Konstantin Novoselov fueron galardonados con el Premio Nobel de Física.

Las peculiaridades del grafeno lo hacen un material con gran promesa en muy distintas aplicaciones. En 2008 se presentó el más pequeño transistor creado hasta la fecha, de grafeno, con un átomo de espesor y 10 átomos de ancho. Estos transistores, que sustituirían a los de silicio habituales en nuestros ordenadores, permitirían microprocesadores mucho más rápidos, que usen menos energía y despidan mucho menos calor. Al ser casi totalmente transparente (más del 97%) y muy flexible, sería ideal para hacer con él pantallas táctiles para nuestros dispositivos digitales, en lugar del óxido de estaño e indio que se utiliza en la actualidad.

Su transparencia y conductividad también lo convierten en un excelente candidato para utilizarse en paneles solares más eficientes y económicos, algo indispensable para que la energía solar se convierta en una opción más viable como energía limpia y sustentable.

Una de las aplicaciones inesperadas del grafeno es que ayuda a mejorar la producción de ADN que se realiza mediante el procedimiento llamado RCP, y que es el que se utiliza para multiplicar una pequeñísima muestra de ADN para poderla analizar, labor de gran relevancia en áreas como la paleontología y la criminalística. También se está explorando su utilización en los procesos de secuenciación genética, con la posibilidad de hacerlos más rápidos y menos costosos.

Utilizado como filtro, el grafeno guarda una gran promesa para diversos procedimientos industriales, ya que deja pasar el vapor de agua pero no otros líquidos y gases, lo que puede ser útil en procesos de destilado o desalinización de agua.

Con el entusiasmo por aprovechar el grafeno en muchas aplicaciones más como sensores o sistemas de control térmico, y buscando aplicaciones para otras características singulares como el cambio en el campo magnético que exhibe el grafeno cuando se le somete a tensión, es muy posible que en poco tiempo empecemos a encontrar el grafeno en nuestra vida diaria.

Fuera de los lápices, claro.

Grafeno sex

Una de las iniciativas de la Fundación de Bill y Melinda Gates es la creación de condones más fáciles de usar y más finos, para promover su uso con fines de prevención de enfermedades de transmisión sexual y de control de la natalidad. A fines de 2013, la fundación concedió unos 75.000 euros a un equipo de científicos de Manchester para que desarrollen un nuevo diseño de condones que utilizan grafeno mezclado con látex.

Severo Ochoa y las enzimas

Las enzimas, fundamentales para todos los procesos químicos de la vida, fueron el área de trabajo del último científico español que ha obtenido un Premio Nobel en el terreno de las ciencias.

Monumento a Severo Ochoa en la
Facultad de Medicina de la Universidad
Complutense de Madrid. Escultor:
Víctor Ochoa.
(Foto D.P. vía Wikimedia Commons) 
Como uno de los dos premios Nobel de Medicina o Fisiología (junto con Santiago Ramón y Cajal), Severo Ochoa es uno de los nombres más conocidos de la ciencia española, y de los pocos, si no el único, que ha sido objeto de una biopic, o película sobre su vida.

Nacido en Luarca, Asturias, donde reposan sus restos frente al mar, en 1905, Ochoa se vio inspirado por la figura de Ramón y Cajal, primero, para conseguir su doctorado en medicina en la Universidad de Madrid en 1929, pero sin intención de ejercer la medicina, sino como punto de partida para dedicarse a la investigación. La primera publicación científica de Ochoa data de ese año, exactamente, dedicada a la creatina, una sustancia que estimula el crecimiento de los músculos. El joven médico exploraba las fuentes de energía necesarias para la contracción de los músculos.

Su trabajo sobre la bioquímica y la fisiología de los músculos continuó en Heidelberg, a donde fue como investigador en el laboratorio de Otto Fritz Meyerhof en el instituto Kaiser Wilhelm. El asturiano volvió a su universidad en 1931 como profesor, para luego pasar dos años trabajando en Londres donde volvió su atención hacia el estudio de las enzimas. Una vez más volvió a Madrid en 1934, pero en 1936, debido al estallido de la Guerra Civil Española, sale definitivamente del país, primero regresando al laboratorio de Meyerhof y después a Oxford. La Segunda Guerra Mundial, finalmente, lo empuja a dejar Europa para establecerse definitivamente en los Estados Unidos.

Las enzimas

Las enzimas que se convirtieron en la pasión de toda la vida de Severo Ochoa son grandes moléculas producidas por los seres vivos que funcionan como catalizadores, es decir, como mediadores que aceleran las reacciones químicas. Dos moléculas que pueden unirse (o una molécula que puede descomponerse) necesitan una determinada cantidad de energía para llevar a cabo tales reacciones químicas. Un catalizador interviene para reducir la energía necesaria, facilitando la reacción química sólo con su presencia, sin desgastarse o agotarse.

Un catalizador metálico, por ejemplo, es el platino del convertidor catalítico que reduce las emisiones dañinas de los motores de combustión interna. Al quemarse el monóxido de carbono, los óxidos de nitrógeno y los hidrocarbonos en presencia de una pequeña cantidad de platino, experimentan reacciones químicas que las convierten en sustancias no contaminantes: nitrógeno, oxígeno, agua y bióxido de carbono. El platino no se desgasta ni se reduce en este proceso.

Las enzimas hacen lo mismo pero en los seres vivos. El ejemplo más común de enzimas, utilizadas en toda cultura humana, son las que tienen las levaduras, y que se utilizan para fermentar pan, vino y cerveza, facilitando la conversión de los azúcares de distintos productos en alcoholes.

Es fácil ver que las enzimas son uno de los principales componentes de la vida tal como la conocemos en nuestro mundo, ya que permiten sintetizar o crear materiales que necesitamos (por ejemplo, uniendo aminoácidos para crear proteínas), o degradándolos (como al digerir las proteínas de nuestros alimentos para descomponerlas en aminácidos que podamos utilizar) o bien produciendo energía para el funcionamiento de todo organismo.

Como ejemplo de algunas de los miles de enzimas que están activas en el cuerpo humano tenemos a la sucrasa, que digiere azúcares complejas y almidones; las proteasas, que digieren las proteínas de las carnes, nueces, huevo y queso o la lipasa, que descompone algunas grasas. La presencia o ausencia de determinadas enzimas puede ser determinante en muchos procesos. Por ejemplo, las personas que son intolerantes a la lactosa no pueden crear la enzima llamada, precisamente, lactasa, y por tanto no pueden digerir este azúcar comúnmente presente en la leche.

El trabajo de Ochoa lo llevó a aislar una enzima, procedente de una bacteria con la que consiguió crear ARN sintético por primera vez en la historia, un logro que abrió muchas puertas para la investigación genética. En un principio, se creyó que esta enzima era la ARN-polimerasa, que es necesaria para producir copias (transcripciones) en ARN utilizando el ADN como plantilla. El estudio relatando sus trabajos se publicó en 1955. Por entonces, un científico que había sido su alumno, Arthur Kornberg, consiguió igualmente producir ácido desoxirribonucleico sintético. El trabajo de ambos permitió entender cómo se forman las moléculas de ADN y ARN a partir de moléculas más pequeñas. Fue por ello que en 1959 se les informó que se les concedía el Premio Nobel de Medicina o Fisiología “por sus descubrimientos del mecanismo en las síntesis biológicas del ácido ribonucleico y ácido desoxirribonucleico”.

En 1960 se descubrió que esa enzima no era realmente ARN-polimerasa, sino que tenía el nombre de polinucléotido fosforilasa, y que en el interior de la célula no era la responsable de la transcripción del ARN, aunque podía crear moléculas de ARN fuera de la célula, mientras que las investigaciones lograron identificar a la ARN-polimerasa.

Pero esto no significaba demérito alguno al trabajo del asturiano. La enzima aislada y utilizada por Severo Ochoa fue utilizada para crear distintos tipos de ARN sintético que colaboraron de modo decisivo a descifrar el código genético.

Mientras tanto, el científico se había unido al Colegio Universitario de Medicina de Nueva York, en el que permaneció como director del Departamento de Bioquímica hasta su jubilación en 1974.

La jubilación, sin embargo, no detuvo su trabajo. Entre 1974 y 1985 fue investigador del Instituto Roche de Biología Molecular en Nueva Jersey. En 1975, además, al término de la dictadura franquista, volvió al fin a España, donde celebró sus 70 años de edad con una memorable reunión de científicos y artistas que culminó en Figueras, en la casa de Salvador Dalí.

Finalmente, a partir de 1985 fungió como asesor de política científica y volvió a dar clases, ahora en la Universidad Autónoma de Madrid, donde siguió trabajando hasta su muerte, por neumonía, a los 88 años de edad, en 1993.

Severo Ochoa por toda España

El nombre de Severo Ochoa es común en los callejeros de toda España, en calles, avenidas, plazas y bulevares. También llevan su nombre escuelas de todos los niveles y centros de investigación, y varios premios, uno de ellos concedido por la fundación que legó a España. Y al menos 5 estatuas o monumentos: en el CSIC y la Universidad Complutense de Madrid, el campus de Cantoblanco de la Universidad Autónoma de Madrid, el Hospital Clínico Universitario de Salamanca, Gijón y su natal Luarca.

Ciencia de la moral

Una de las últimas fronteras de la ciencia es abordar las cuestiones del bien y el mal, de dónde surgen y cuáles son los imperativos morales para nuestra sociedad.

El etólogo Frans de Waal
(Foto GFDL de Chowbok, enWikimedia Commons)
El experimento es espectacular. Dos monos capuchinos de en un grupo se ponen en dos jaulas adyacentes donde se pueden ver uno a otro. Cuando le entregan una piedra al experimentador, se les premia con un trozo de pepino, y ambos realizan la tarea con entusiasmo. Cuando se cambia la situación y a uno de los monos se le empieza a dar una uva mientras que al otro se le sigue dando un trozo de pepino, el segundo se inquieta. Después de ver algunas veces que a su compañero le dan uva y a él pepino, rechaza el premio, lo arroja contra la experimentadora, agita las paredes de la jaula, golpea el suelo con la mano.

Para el diseñador del experimento, el estudioso holandés de la conducta animal Frans de Waal, la reacción del segundo mono indica de modo claro que éste comprende el sentido de la justicia. “Esto son las protestas en Wall Street”, comenta.

De hecho, en algunos casos, el primer mono empieza a negarse a hacer la tarea hasta que no se empieza a premiar a su compañero de la misma manera que a él, con una uva, con un comportamiento altruista: incomodarse de modo desinteresado para que otro ser se beneficie.

La cooperación entre animales es una necesidad, sobre todo en las especies sociales que deben trabajar en equipo para sobrevivir: los lobos que cazan, los babuinos que se defienden de los leopardos, los lémures de cola anillada que defienden su territorio de los invasores. Pero el altruismo va más allá de la cooperación, porque no implica en apariencia un beneficio individual para el ser altruista.

El único animal que tiene una moral desarrollada, un concepto de lo bueno y lo malo, es el ser humano, que puede reflexionar sobre esa justicia elemental que parecen practicar otros animales. Somos el animal que puede empatizar con otros congéneres aunque nunca los haya visto y estén en otro continente. Somos también el único animal que empatiza con todos los demás animales, teniendo mascotas a las que cuida, salvando especies enteras y estableciendo estrictos lineamientos para el uso de animales en la alimentación o la experimentación.

¿Cómo surge esa moral, esa visión de lo correcto y lo incorrecto? La pregunta ha ocupado gran parte del pensamiento humano a lo largo de la historia, desde los filósofos griegos de la antigüedad, que sugerían que la razón humana bastaba para entender lo que era bueno y lo que era malo, y por tanto a practicar lo primero y evitar lo segundo.

Sin embargo, la visión dominante de muchas culturas era que la moralidad venía de fuera, que no era parte constituyente del ser humano, sino que eran los monarcas o los dioses quienes determinaban lo bueno y lo malo, premiando las buenas acciones y castigando las malas. Esta visión suponía que el ser humano tenía una naturaleza malévola que sólo se controlaba mediante una moral impuesta.

El debate sobre el origen de la moral se mantuvo en el terreno especulativo hasta la aparición de la teoría de la evolución por medio de la selección natural de Charles Darwin y Alfred Russell Wallace a mediados del siglo XIXa.

Si las características físicas son resultado de un proceso de selección que favorece ligeramente, generación tras generación, ciertos rasgos que aumentan poco a poco la probabilidad de reproducción de quienes los tienen, ¿no es lógico que pase lo mismo con el comportamiento y con los conceptos morales?

Los estudios realizados en los últimos años parecen indicar que la respuesta es “sí”. Las ventajas evolutivas de un comportamiento altruista, de conocer lo bueno y lo malo, y los mecanismos sociales para recompensar el bien y castigar el mal en función de su beneficio para la comunidad parecen estar en las bases mismas de la evolución de los homininos hasta su forma actual, que somos nosotros.

Recientes descubrimientos en una fosa funeraria neandertal de La Chapelle-aux-Saints, por ejemplo, demuestran que esta especie humana, pariente de la nuestra y parte de cuyos genes llevamos en mayor o menor medida, cuidaba de los ancianos.

En la mayoría de las especies sociales, los animales viejos, enfermos o lesionados son una carga para el grupo y suelen ser las presas preferidas de los depredadores. Pero para estos neandertales no era así, como lo evidencia el hallazgo del esqueleto de un hombre que vivió hace unos 50.000 años, que apenas podía caminar, había perdido todos los dientes y fue cuidadosamente enterrado después de su muerte.

Este ejemplar, por cierto, que tenía una deformidad en la columna vertebral, fue el responsable de que se creara la leyenda del neandertal poco inteligente que caminaba inclinado y como un gorila. Hoy sabemos que nuestros parientes caminaban tan erguidos y tan eficientemente como nosotros... o más. Este hombre había sido cuidado hasta los 40 años de edad, más o menos, una edad provecta según los estándares de la especie. William Rendu, del Centro Nacional de Investigaciones Científicas de Francia, explicaba que sin dientes, probablemente otros miembros del grupo masticaban su comida, y con la cadera dañada y varias vértebras fusionadas, no se podía mover por sí mismo. Y sin embargo, el grupo lo llevaba consigo aún a riesgo de quedar más expuestos a los ataques de depredadores o de otros grupos de neandertales y, quizá, Homo sapiens.

Aunque los biólogos evolutivos, genetistas, paleoantropólogos, psicólogos y otros científicos aún están desentrañando los mecanismos mediante los cuales el ser humano desarrolló los conceptos abstractos de bien y mal, entre ellos algunos tan universales como el tabú contra el asesinato o el robo, lo que parece cierto es que, en palabras del Frans de Waal, la moral antecedió con mucho a las religiones organizadas y quizá el valor de éstas es, precisamente, no crear la moral, sino fortalecer su cumplimiento, como un mecanismo de fortalecer lo que las sociedades ya conceptuaban como bueno o malo.

El biólogo Edward O. Wilson había dicho, en 1975, que la ética algún día sería retirada de las manos de los filósofos e incorporada en la síntesis evolutiva de la biología moderna. Quizá ese día ya ha llegado, con el trabajo de estudiosos como Richard Dawkins, Steven Pinker, Sam Harris, Joshua Green o Elizabeth Phelps, entre otros, que tienen ahora la misión de desentrañar los mecanismos del bien y el mal entre los seres humanos.

Bienestar y moral

“La moralidad debe relacionarse, a algún nivel, con el bienestar de criaturas conscientes. Si hay formas más y menos efectivas mediante las cuales buscamos la felicidad y evitar la miseria en este mundo, y claramente las hay, entonces hay respuestas correctas e incorrectas a las cuestiones de la moral”. Sam Harris, neurocientífico.

Cabello... ¿y plumas y cuernos de rinoceronte?

Una molécula casi indestructible, que une a prácticamente todos los seres vivos, y que a lo largo de la evolución se ha utilizado para los más diversos fines... incluso ponerse guapo.

Rinocerontes blancos pastando en el zoológico de Dublín,
a salvo de los cazadores furtivos que buscan sus cuernos.
(Foto CC de Aligatorek, vía Wikimedia Commons
El cabello... y también las plumas y la superficie de los picos de las aves, como los cuernos de rinoceronte y de otros animales, comparten una característica con todo el pelo y lana, uñas, garras, capas superiores de la piel y pezuñas del reino animal. Y añadamos las escamas de los reptiles y las conchas de las tortugas. Todos están formados por variantes de una familia de sustancias fibrosas estructurales que son esenciales para el cuerpo de los mamíferos, aves y reptiles: las queratinas.

Las queratinas tienen composiciones químicas variadas sobre una base común que, según el nivel de ciertos aminoácidos, les permiten ser extremadamente duras, como las pezuñas de un caballo, o flexibles y sedosas como el cabello de un bebé, sirviendo así para muchos usos: como armas, protección para caminar, abrigo, etc. Aunque las llamamos proteínas, los científicos prefieren decirles “polipéptidos”, pues sólo tienen entre 10 y 100 aminoácidos, mientras que las verdaderas proteínas serían las que tienen más de 100 aminoácidos.

En los anfibios, estas proteínas son poco frecuentes, sólo las ranas la tienen en sitios donde su piel se ve sometida a gran desgaste, como la boca y, entre los peces, sólo algunas clases tienen dientes hechos de queratina. Sus escamas, en cambio, a diferencia de los reptiles, pueden estar hechas de estructuras similares al hueso, dentina (la misma sustancia que protege nuestros dientes), un esmalte llamado vitrodentina o colágeno, entre otras sustancias.

Desde un punto de vista químico, la queratina es una molécula dura y totalmente insoluble formada por cadenas de aminoácidos como la lisina, la arginina y la cisteína, en forma de disulfato, que se disponen en hojas paralelas formando agrupaciones muy resistentes. La única sustancia similar en el mundo animal es la quitina, que forma el exoesqueleto de los atrópodos, desde los langostinos hasta las moscas. De la resistencia de la queratina dan fe las exhumaciones de gente que, cientos de años después de haber fallecido, conserva a su alrededor cabello y uñas. Esto se debe a que sólo algunos hongos y bacterias cuentan con las proteínas necesarias para digerir o descomponer la queratina.

Como detalle curioso, la presencia de azufre en el disulfato de cisteína es la responsable del olor desagradable que produce la queratina al quemarse, sea cabello, cuerno, uñas, etc.

Como seguramente usted sabe, su piel está formada por varias capas de células que se forman a nivel profundo y van subiendo hacia la superficie. Primero, las células son parte de la dermis, que es la que protege nuestro cuerpo y da elasticidad a la piel. Al paso del tiempo, las células pasan a una capa superior, la epidermis, y adquieren un nuevo nombre al cambiar sus funciones, llamándose queratinocitos o células de queratina. La epidermis está formada por varias capas y, mientras las células pasan a las superiores, se van “cornificando” al producir cada vez más queratina hasta que pierden su núcleo y órganos y mueren.

Esa capa superior de la piel es conocida como “estrato córneo”, precisamente porque está formado únicamente por la queratina de las células muertas, y nos protege de los elementos y el agua. La queratina también forma las callosidades de la piel, como respuesta a un exceso de frotamiento o presión en un punto determinado de la piel, como las puntas de los dedos de guitarristas y otros músicos que tocan instrumentos de cuerda, los labios de quienes tocan algunos instrumentos de viento como la trompeta, o las manos de los obreros que hacen intenso trabajo manual. Los callos son queratina.

Liso o rizado, y otros misterios

El cabello, por su parte, está formado por otro tipo de queratina capaz de formar largos cables que cubren todo el cuerpo de muchos animales, aunque en nosotros, los “monos desnudos” como nos llamó el etólogo Desmond Morris, el cabello más importante es el que crece en nuestras cabezas.

Por cierto, una de las características más llamativas del cabello es que cada una de las más o menos 100.000 hebras que hay en nuestras cabezas (salvo que suframos alguna forma de calvicie) puede ser completamente liso y recto o rizado apretadamente como sacacorchos. Esta diferencia se debe a la forma de nuestros folículos pilosos, los pequeños órganos de nuestra epidermis que producen cada hebra de cabello, y del ángulo respecto de la piel al cual se produzca. Los folículos pilosos circulares y que producen pelo que crece casi perpendicular al cuero cabelludo dan como resultado cabello totalmente liso. Si los folículos pilosos tienen una forma de óvalo muy alargado y el pelo crece en un ángulo muy agudo, el cabello es rizado.

No hay nada qué hacer para cambiar esto, porque la forma de nuestros folículos pilosos está determinada genéticamente, es decir, es resultado de la mezcla de genes de nuestro padre y nuestra madre. Y, en general, se considera que el cabello rizado es dominante sobre el liso, es decir, si alguno de nuestros padres tiene el cabello rizado, lo más probable es que nosotros también lo tengamos así.

Por cierto, en el mundo de los supuestos alimentos funcionales y la charlatanería cosmética existen diversos alimentos y suplementos que afirman contener queratina, y que prometen por tanto que esa queratina se aportará a nuestro cabello para hacerlo más resistente, grueso y atractivo. Sin embargo, el aparato digestivo humano no puede digerir la queratina, al carecer la enzima (proteinasa-K) necesaria para descomponer esa proteína, ni la absorbe para llevarla al cabello, simplemente la elimina con las heces. También, como ocurre con quienes padecen “tricofagia”, literalmente “comer pelo”, y algunos animales, se pueden formar en el estómago bolas de pelo que pueden incluso tenerse que retirar quirúrgicamente.

Una de las grandes dudas que parecen haberse resuelto últimamente respecto de esta resistente proteína es que, al parecer, los picos de algunos dinosaurios estaban hechos de queratina, una innovación que mejoraba la estabilidad del cráneo al alimentarse, característica que transmitieron a sus descendientes: las aves.

El cuerno de rinoceronte

El cuerno del rinoceronte, al cual diversas supersticiones le atribuyen propiedades mágicas provocando la cacería furtiva de este animal, no está formado por un núcleo de hueso recubierto de queratina, como los cuernos de los vacunos, las cabras o los antílopes. Pero tampoco es una agregación de pelo como se creía en el pasado: es queratina como la de las pezuñas de los caballos, con depósitos de calcio que le dan fuerza y rigidez. Y, por supuesto, no es un afrodisiaco.

Pasado y futuro de los cometas

Espectaculares y fascinantes, los cometas que rasgan el cielo ocasionalmente son mensajeros de los confines de nuestro sistema solar y claves para conocer el universo.

El cometa ISON camino al sol el 21 de noviembre
de 2013. (Foto CC de Juan Carlos Casado,
vía Wikimedia Commons)
Los cometas son ciertamente fenómenos cósmicos enormemente atractivos, impredecibles (salvo excepciones de cometas periódicos como el Halley), espectaculares y de aspecto distinto a todo lo demás que observamos. Por ello, para muchas culturas precientíficas, contradecían el orden del universo que tan intensamente observa la humanidad desde el principio de la agricultura. El movimiento de los objetos en el cielo es predecible y exhibe ciclos muy específicos. Pero los cometas aparecían de pronto, se movían a gran velocidad con su brillante cuerpo y su alargada cola, y por ello era frecuente que se les considerara avisos o presagios, generalmente de acontecimientos negativos.

Uno de los más antiguos relatos de la humanidad, la “Epopeya de Gilgamesh”, escrita hace al menos 2.000 años en Mesopotamia, advertía que la llegada de los cometas traía consigo incendios, azufre e inundaciones, mientras que los Yakut de Mongolia los llamaban “hijas del diablo”. El temor a los cometas fue una constante y se les culpaba, previsiblemente, de toda tragedia ocurrida cuando uno era visible, desde el asesinato de Julio César hasta la peste negra en Inglaterra durante la Edad Media. Sólo en China, considerados como “estrellas viles”, se registró más desapasionadamente la aparición de cometas a lo largo de los siglos.

Todo cometa que tenga la posibilidad de ser visible desde la superficie de nuestro planeta es noticia, ya sea el Gran Cometa de Marzo de 1843, visible durante el día y que exhibió una cola de una longitud de dos veces la distancia entre la Tierra y el Sol, un cometa que vuelve a la vecindad del sol cada 75-76 años como el Halley o cometas que han resultado decepcionantes por haberse destruido al pasar cerca del sol, como el Kohoutek o el ISON de 2013.

Pero incluso cometas que no han pasado cerca de nuestro planeta pueden capturar nuestra imaginación. El Shoemaker-Levy 9, por ejemplo, se rompió en julio de 1994 al pasar cerca de Júpiter y sus fragmentos cayeron al planeta gaseoso, lo que permitió adquirir una enorme cantidad de conocimientos sobre el gigante de nuestro sistema solar, atrayendo una enorme atención de los medios de comunicación. Aunque hay evidencias de cometas chocando con los planetas, incluido el nuestro, era la primera vez que los astrónomos podían ver un acontecimiento así.

El nombre de ese cometa también llama la atención. ¿Por qué Shoemaker-Levy? Porque fue un cometa descubierto simultáneamente por Eugene y Carolyn Shoemaker, una pareja de astrónomos profesionales, y David Levy, astrónomo aficionado. Han codescubierto varios cometas, el noveno de los cuales protagonizó el célebre choque contra Júpiter.

Los cometas pueden ser descubiertos por aficionados o profesionales, ya sea con telescopios o mediante la observación de fotografías realizadas por satélites como el SOHO, dedicado a la observación del Sol. Los cometas suelen ser llamados de acuerdo a sus descubridores. La palabra “cometa”, por cierto, significa “el que tiene cabello”, pues su cola parece una larga cabellera
Fue hacia el siglo XV, con la revolución científica, que los cometas pasaron definitivamente del terreno de la superstición al del estudio ordenado y metódico, mismo que a su vez permitió determinar que los cometas son cuerpos que giran alrededor del sol como los planetas, pero lo hacen, según pudo comprobar Issac Newton con sus cálculos, en elipses muy, muy alargadas. Al calcular las elipses se pudo ver que algunos cometas provenían de muy lejos, de los bordes exteriores del sistema solar.

Hoy, la hipótesis más aceptada es que algunos cometas provienen de una capa esférica de objetos de hielo que rodea el sistema solar a una distancia de entre 5.000 y 100.000 veces la que hay entre el sol y nuestrso planeta. Esta nube de cometas se conoce como Nube de Oort, por haber sido propuesta por el astrónomo Jan Oort. Las perturbaciones gravitacionales serían las responsables de que algunos de esos cuerpos caigan hacia la parte interior del Sistema Solar. Su órbita puede tardar miles de años en completarse y por ello se les llama cometas de período largo.

Por contraste, los comentas de período corto tardan menos de 200 años en completar una órbita alrededor del sol, y se cree que proceden de un disco de cuerpos llamado Cinturón de Kuiper, que estaría más allá de la órbita de Neptuno.

Tanto unos como otros son, se cree, restos de la formación de nuestro sistema solar hace más de 4.600 millones de años, y por tanto su composición es la misma y puede revelar datos sobre las condiciones de ese acontecimiento. El núcleo de un cometa es una mezcla de hielo, polvo y roca que raras veces tiene más de 50 km de diámetro y que al acercarse al sol se calienta. Esto provoca que el hielo que contiene se sublime formando una nube de gases volátiles alrededor del núcleo, llamada “coma”. La cola está formada por gases y polvo que son empujados por el viento solar, de modo parecido a una estela. Por ello, la cola siempre apunta en dirección contraria al sol, de modo que al dar la vuelta alrededor del sol y empezar a alejarse, la cola apunta en la dirección de su movimiento, como una barba más que una cabellera.

Hasta hoy, el momento culminante del estudio de los cometas ocurrió en abril de 2005, cuando la sonda “Impactor” de la misión Deep Impact (“impacto profundo”) se estrelló contra el cometa Tempel I, procedente de la Nube de Oort, para estudiar por primera vez directamente la composición de un cometa. Esta hazaña deberá ser superada por la nave espacial Rosetta de la Unión Europea, lanzada en 2004, y que en noviembre de 2014 deberá hacer descender una sonda suavemente en el cometa 67P/Churyumov/Gerasimenko, y hacer un estudio prolongado de la composición del cometa con diversos instrumentos robóticos.

Así, antes que presagios malignos, los cometas nos traen información sobre nuestro sistema solar y el comportamiento del universo que nos rodea, además del disfrute innegable de la belleza y majestuosidad de uno de estos cuerpos cruzando la bóveda celeste y recordándonos los verdaderos misterios que hay allá afuera.

Morir por el cometa

Las supersticiones alrededor de los cometas, sin embargo, no han desaparecido del todo. Cuando apareció el cometa Halle-Bopp en 1997, una secta adoradora de los ovnis y sus supuestos tripulantes extraterrestres, Puerta del Cielo decidió que una nave espacial extraterrestre viajaba detrás del cometa, oculto por él. El 26 de marzo de 1997, 39 miembros del grupo se suicidaron en grupo con la idea de que sus almas serían recogidas por la nave y llevados a un plano superior de existencia.

De la leucemia al SIDA: 40 años contra la enfermedad

El gusto por el conocimiento y por el descubrimiento, además de la satisfacción de mejorar la saludde millones de personas, en la vida de una mujer pionera en la investigación farmacológica.

Gertrude B. Elion, salvadora de vidas.
(Foto DP de National Cancer Institutes,
vía Wikimedia Commons)
“No tenía ningún interés específico por la ciencia hasta que mi abuelo murió de cáncer estomacal. Decidí que nadie debería sufrir tanto.” Así explicaba Gertrude Belle Elion por qué, a los 15 años de edad, se decidió por una carrera en la ciencia que dio como resultado 45 patentes de medicamentos de gran importancia y valor, más el Premio Nobel de Fisiología o Medicina de 1988.

Sus padres eran emigrantes. Él de Lituania y ella de una zona entonces perteneciente a Rusia. Gertrude nació en 1918 en Nueva York. Pese a la posición de su padre como dentista, la familia sufrió problemas económicos por el crack de la bolsa de 1929, pues su padre, como tantos otros, había volcado sus ahorros en la bolsa de valores.

Pese a ello, recuerda haber tenido una infancia feliz con su hermano y una buena educación en escuelas públicas. En su autobiografía para el Nobel cuenta: “Era una niña con una sed insaciable de conocimientos, y recuerdo disfrutar todos mis cursos casi de igual manera. Cuando, al final de mi bachillerato llegó el momento de elegir una asignatura en la cual especializarme, me vi en un dilema.”

La muerte de su abuelo inclinó la balanza hacia la ciencia. Sus notas le permitieron matricularse en 1933 en el Hunter College, una institución gratuita de estudios superiores, pues la familia no podría costearle los estudios. La joven se graduó cuatro años después, a los 19, con los máximos honores en química: summa cum laude.

Una cosa era tener un excelente historial académico y otra era conseguir un empleo. No había muchas mujeres dedicadas a la química y la idea no atraía a los laboratorios. En palabras de la investigadora: “No estaba consciente de que tenía cerradas las puertas hasta que empecé a llamar a ellas. Había ido a una escuela sólo de chicas. Había 75 especialistas en química en esa generación, pero la mayoría de ellas iban a enseñar la asignatura... Cuando salí y no querían mujeres en el laboratorio, fue una conmoción”.

Gertrude empezó a trabajar como profesora y luego aceptó un trabajo, inicialmente sin sueldo, como asistente de laboratorio para poder continuar sus estudios en la Universidad de Nueva York, a la que ingresó en 1939. Un año después, había completado los créditos para su maestría en ciencias, pero tuvo que volver a dar clases para poder hacer por las noches la investigación necesaria para obtener su título.

Era 1941, en plena Segunda Guerra Mundial, y escaseaban los profesionales de la química. Aún así, el único trabajo que pudo obtener pese a su grado de maestría fue como analista química, que después pudo abandonar para dedicarse finalmente a la investigación. La oferta que más le interesó fue la del investigador George H. Hitchings, que encabezaba el laboratorio de investigación biomédica de la farmacéutica Burroughs-Wellcome (hoy parte del laboratorio GlaxoSmithKline). Aunque sólo tenía otra persona a su cargo, Hitchings contaba con carta blanca de la compañía para dedicarse a la investigación que considerara pertinente.

Gertrude Elion se integró al equipo de Hitchings en 1944 y nunca más se separaría de la empresa, donde realizó toda su carrera. Hitchings no tenía problemas en trabajar con mujeres en el laboratorio sino que además impulsó a Gertrude para que ampliara sus conocimientos de química acercándola a lo que hoy conocemos como investigación biomédica en el sentido más amplio.

El equipo se propuso una aproximación novedosa para su tiempo. En lugar de funcionar por ensayo y error para probar distintas sustancias en distintas enfermedades, se dieron a la tarea de analizar químicamente el resultado de las afecciones. Es decir, estudiaban las diferencias a nivel bioquímico entre las células sanas y los agentes causantes de las enfermedades (como los virus) y partir de esa información para diseñar sustancias que bloquearan las infecciones.

El primer resultado de esta aproximación fue una purina, que es un compuesto orgánico de nitrógeno formado por dos anillos, que podía inhibir el desarrollo de la leucemia en ratones y que ayudó a algunos pacientes con leucemia en pruebas clínicas. Sobre esta base, Gertrude desarrolló la 6-mecaptopurina, que hoy en día se utiliza como quimioterapia para tratar algunas formas de cáncer (incluida la leucemia) y enfermedades inflamatorias del aparato digestivo.

Seguirían, en rápida sucesión, la azatioprina, el primer agente inmunosupresor (que suprime la respuesta inmune) que evitaba el rechazo de órganos y permitió por primera vez el trasplante de riñones entre personas no emparentadas entre sí, un medicamento que combate al parásito de la malaria, un antibiótico que combate la meningitis, la septicemia y otras infecciones bacterianas, el aciclovir contra el herpes y otros medicamentos contra el cáncer.

Su carrera, sin embargo, le exigió un sacrificio que iría en contra de la lógica de cualquier investigador científico. Habiendo empezado a estudiar un doctorado por las noches en el Politécnico de Brooklyn, llegó un momento en que la escuela le exigió que asistiera a jornada completa, para lo cual tendría que renunciar a su empleo en el laboratorio. Decidió quedarse y renunciar al doctorado, esa meta tan importante en la ciencia.

A cambio, a partir de 1969 y durante 30 años, recibió 25 doctorados honorarios que resaltaban que su enorme labor científica no había necesitado ese valorado título. A lo largo de su carrera, trabajó también para el Instituto Nacional del Cáncer de los EE.UU. y la Organización Mundial de la Salud entre otras muchas instituciones de combate a la enfermedad, además de impartir clases en diversas universidades , desde 1967 fue nombrada responsable del departamento de Terapia Experimental de Burroughs-Wellcome y, después de retirarse en 1983, siguió trabajando como consultora del laboratorio y en diversas actividades relacionadas con la investigación.

Cuando obtuvo el Nobel en 1988, declaró al New York Times: “El premio Nobel está muy bien. Pero los medicamentos que he desarrollado son una recompensa por sí mismos”.

Gertrude Elion murió en 1999, después de recibir prácticamente todos los honores y premios de la investigación biomédica y la invención a nivel internacional y de los Estados Unidos.

Hacer lo que te gusta

Gertrude Elion no se casó ni tuvo hijos, y sus entretenimientos eran la fotografía y los viajes. Si su vida era su trabajo, es porque lo disfrutaba. Como dijo en una conferencia: “Es importante dedicarte al trabajo que te gustaría hacer. Entonces no parece trabajo. A veces uno siente que es casi demasiado bueno para ser cierto que alguien te pague por pasarlo bien”.

¿Cómo sabemos que sabemos?

Podemos descubrir cosas sobre nuestro universo, sobre lo animado y lo inanimado, con una certidumbre razonable. Esto no fue así durante la mayor parte de la historia del ser humano.

Novum Organum Scientiarum, la
"nueva herramienta de la ciencia",
libro esencial de Francis Bacon para
el desarrollo del método científico.
(vía Wikimedia Commons)
 
El ser humano se define, entre otras cosas, por su capacidad de crear y transmitir conocimientos, una estrategia de supervivencia novedosa y exclusiva (hasta hoy), que permitió a nuestra especie, a sus antecesoras y parientes evolucionar a un ritmo muy acelerado respecto de las demás.

Los seres vivos desarrollan nuevas capacidades lentamente. Los mejor adaptados tienden a reproducirse más eficazmente de modo gradual, acumulando sus ventajas generación tras generación. El ser humano puede adoptar rápidamente, y a nivel individual, numerosas características adaptativas. Hacer fuego o herramientas, cambiar estrategias de cacería, empezar a alimentarse de plantas y animales nuevos o aprender electrónica o música son sólo ejemplos de los rápidos cambios no genéticos que nos permite el conocimiento.

Por ello hemos buscado cuál es la mejor forma de obtener conocimiento. Algunos, especialmente prácticos, se obtuvieron por ensayo y error. Si un miembro del grupo probaba un alimento nuevo y enfermaba, se consideraba que el alimento era inadecuado por alguna causa. Si un miembro conseguía hacer una herramienta o arma de buena calidad, podía enseñárselo a otros, y todos aprender qué tipos de piedra eran mejores.

Pero las preguntas siempre han sido más abundantes que las respuestas y se necesitaban fuentes de conocimiento. Por ejemplo, la revelación de los dioses, que algunos decían que recibían en “visiones” o sueños vívidos o poderes especiales. Pero esta forma de conocimiento no era fiable, ni entonces ni hoy, cuando la usan videntes y brujos, y es que no era ni precisa, ni fiable.

Grecia y la filosofía

Hacia el siglo VI antes de la Era Común, en Grecia se empezó a tratar de conocer la realidad de un modo nuevo, a través del pensamiento y la reflexión: la “filosofía” o ”amor por la sabiduría”. Su sistema era el discurso razonado, el pensamiento crítico y la reflexión. Por medio de las matemáticas, la geometría y la lógica encontraron afirmaciones cuya verdad podía ser demostrada sin intervención de los dioses, lo que animó otras formas de investigación.

Sócrates, en el siglo V a.E.C. desarrolló el método dialéctico, de preguntas y respuestas para analizar las más diversas afirmaciones. El cuestionamiento y las contradicciones permitían eliminar las ideas menos acertadas y buscar otras mejores. Junto con ello, había una forma de comprobar ideas en la práctica, empíricamente. Este método fue aplicado selectivamente por Aristóteles, que logró ver que los delfines son mamíferos pero creyó que las moscas tienen cuatro patas, cuando bastaba atrapar una y contarlas para tener una mejor respuesta.

La filosofía griega dio lugar a la escolástica medieval, método que buscaba la verdad mediante la razón pero sin contradecir a las autoridades del pasado, válidas por dogma. Si una afirmación contradecía a la Biblia o a Aristóteles o a alguno de los padres de la iglesia, se daba por errónea.

Pero en el Renacimiento, alrededor del siglo XVI, algunos pensadores se atrevieron a desafiar a las autoridades con una nueva forma de buscar conocimiento a través de una observación metódica con la cual proponer explicaciones o interrelaciones entre los fenómenos del universo y, después, revisar la evidencia para ver si sustenta o rechaza la hipótesis.

Pero para aprovechar el nuevo método al máximo era necesario cuestionarlo todo, no aceptar verdades a priori como las de las autoridades, sino tomarlas y someterlas al escrutinio del método para confirmarlas o rechazarlas. Esto disparó el conflicto de la religión y la filosofía escolástica contra lo que Francis Bacon llamaba “conocimiento claro y demostrativo”.

Aplicando de distintas formas el “método científico”, Andreas Vesalio contrastó las afirmaciones de las autoridades sobre la anatomía del cuerpo humano y descubrió que muchas eran incorrectas, además de encontrar otras muchas más certeras. Copérnico observó el movimiento de los cuerpos celestes y, con la evidencia a su alcance, desarrolló una explicación mejor que las anteriores. Galileo observó los cuerpos celestes por el telescopio y confirmó que las ideas de Copérnico eran preferibles. También hizo experimentos que demostraron que las ideas de Aristóteles sobre la caída de los cuerpos eran incorrectas: un cuerpo diez veces más pesado que otro no cae diez veces más rápido, cae a la misma velocidad.

Las afirmaciones producto de este nuevo método podían ser corroboradas o verificadas independientemente por cualquier otra persona que tuviera los mecanismos necesarios de observación y de contrastación de la evidencia. Galileo podía haber sido condenado a arresto en su casa por lo que dijo ver en su telescopio, cuatro lunas girando alrededor de Júpiter como los planetas giran alrededor del sol, pero cualquiera que tuviera un telescopio podía ver lo mismo.

El uso de la evidencia como gran juez de la validez de una afirmación fue el elemento central de lo que se conoció como “revolución científica”.

A partir de ese momento, los seres humanos no sólo empezamos a saber cada vez más cosas, sabíamos cuál era el camino necesario para saberlas, y empezamos a aplicarlo intensamente en las más diversas disciplinas. ¿El agua es un elemento o es un compuesto que se puede dividir en otros elementos? La evidencia experimental demostró que está formada de hidrógeno y oxígeno, no había opinión contraria aceptable. ¿El corazón era simplemente el órgano que daba calor al cuerpo o era el encargado de mover la sangre por todo el organismo? La evidencia demostró que la segunda explicación era mucho más precisa.

Así, descartando hipótesis en función de la evidencia y desarrollando otras hipótesis susceptibles de ser mejoradas, la ciencia y su método consiguieron darlos un conocimiento certero que el ser humano apenas había vislumbrado en el pasado. El nuevo sistema, además, podía autocorregirse, es decir, si un científico erraba en sus observaciones, en sus experimentos, en los datos que reunía, otro podía verificarlo y encontrar los errores para mejorar poco a poco las explicaciones de todo cuanto estudia la ciencia.

Por primera vez en la historia disponemos de un método que nos permite saber con certeza y que nos permite además entender cómo es que los científicos de distintas disciplinas saben las cosas, y que tiene además la enorme ventaja de que funciona, como podemos ver en el mundo a nuestro alrededor, transformado y hecho posible por él.

Un resumen

Francis Bacon (1561-1626), defensor del método científico, lo resumió someramente así: “Observación y experimento para reunir material, inducción y deducción para desarrollarlo: éstas son las únicas buenas herramientas intelectuales.”

Había una vez un gigante...

Los maravillosos mitos de los gigantes están en todas las culturas, una metáfora de fuerza, grandeza y poder, pero desafortunadamente imposibles.

El hombre más alto del mundo en 2013, el
campesino kurdo Sultan Kösen, de 2,51 metros,
con un trastorno de la pituitaria, que exhibe la
debilidad que conlleva la gran estatura:
sólo puede caminar con bastón.
(Foto CC de Amsterdamman
vía Wikimedia Commons)
Nos atraen los extremos, lo más alto, lo más bajo; lo más caliente, lo más frío; lo más rápido, lo más lento... industrias completas como el Libro Guinness de los Récords, que desde 1954 recopila los más variados extremos ya sean del universo, de los logros y características humanos, animales, minerales, vegetales, planetarios y cósmicos.

De entre todos los mitos sobre extremos que nos han legado diversas culturas, uno destaca por su frecuente y atractiva presencia: el de los gigantes, ya sea humanos, o semihumanos.

Así tenemos, en la antigua Grecia, los mitos de numerosos gigantes, entre los cuales los más conocidos son los titanes (incluidos los cíclopes), hijos de Gaia, la Tierra, y Urano, el cielo, y Talos, el gigante de bronce forjado por Hefestos para proteger a Europa y que aparece en la historia de Jasón y los argonautas. En el Tanakh, el libro canónico de la Torah o biblia hebrea, aparecen los Anakin, gigantes aterradores, mientras que en el libro del Génesis de la Biblia cristiana, capítulo 6, versículo 4, poco antes de que Yahvé decidiera el diluvio universal, se establece: “Había gigantes en la tierra en aquellos días”. Y el gigante Goliat en su enfrentamiento con David ofreció una metáfora perdurable no sólo para los creyentes.

Mitos nórdicos y celtas, hindús y japoneses, aztecas y tibetanos, filipinos y mayas, incluyen entre su elenco a una enorme variedad de gigantes, algunos como ogros temibles, otros como bondadosos seres que sostienen el cielo, dioses o simples hombres de estatura excepcional, atribuyéndoles con frecuencia las construcciones de antiguas culturas, como ocurre con los jentilak vascos, a quienes se atribuye la erección de los dólmenes o jentilarri. Los mitos han sido, a su vez, retomados como metáforas por las artes, ofreciéndonos nuevas visiones de estos hombres y mujeres (o semihumanos) de tallas extremas.

Pero en la realidad no hay gigantes.

Algunos espacios marginales del mundo del misterio, de lo supuestamente paranormal o de las fantasías de lo extraordinario suelen proponer la existencia de gigantes reales en la antigüedad, fueran los habitantes de la mítica Atlántida de Platón o el yeti, incluso haciendo circular fotografías trucadas en donde personas de talla normal aparecen junto a osamentas colosales, o junto a momias con sospechoso aspecto de cartón piedra que se afirma que pueden medir desde tres hasta 11 metros de estatura.

Un biólogo, sin embargo, necesita simplemente echar una ojeada a estas fotografías para saber que se trata de trucos, es decir, que los seres que representan son biológicamente imposibles.

Receta para un gigante

El ser humano más alto que se ha registrado hasta la fecha es el estadounidense Robert Pershing Wadlow, que vivió en Illinois entre 1918 y 1940 y que alcanzó una estatura de 2,72 metros debido a un problema de hiperactividad de su glándula pituitaria, algo que no ocurriría en la actualidad, pues existen tratamientos para regular su funcionamiento.

Su breve vida, sin embargo, fue complicada y dolorosa. Para poder caminar necesitaba llevar abrazaderas en las piernas y no tenía casi sensibilidad en as extremidades inferiores, de modo que se rompió varios huesos y, finalmente, murió por una septicemia debida a una ampolla que le provocaron las abrazaderas.

Los problemas que sufrió Wadlow, como muchos otros gigantes reales, se deben a que la estructura de los huesos humanos sólo es eficaz hasta cierto peso, más allá del cual son incapaces de funcionar adecuadamente sin un rediseño profundo de su ingeniería.

Si vemos las patas de un animal relativamente pequeño y de poco volumen y peso, como una hormiga, veremos que son extremadamente delgadas y sin embargo pueden soportar perfectamente el peso del cuerpo del animal. Un animal esbelto como un galgo o un corzo tienen patas proporcionalmente más gruesas si los comparamos con la hormiga, y cuando llegamos a animales muy voluminosos, como los hipopótamos, los elefantes o las tortugas galápagos, encontramos que sus patas son mucho más gruesas en proporción de su cuerpo.

El motivo de esto es un fenómeno que describió Galileo Galilei en su libro Dos nuevas ciencias de 1638 y que en términos generales establece que si hacemos crecer un objeto cualquiera, su volumen aumenta mucho más rápidamente que su área. Esta ley se conoce como la ley del cuadrado cubo. Si un objeto crece cierto porcentaje, su área aumentará al cuadrado de ese porcentaje y su volumen aumentará al cubo de ese porcentaje.

Si duplicamos el tamaño de una persona de 1,70 hasta que mida 3,40, la fuerza de sus huesos (y su área) no se multiplicarán por 2, sino por el cuadrado de 2, es decir, por cuatro; pero su volumen aumentará al cubo de 2, o sea ocho veces: si pesaba 80 kilogramos ahora pesará 640 kilos.

Y si pesas 640 kilos, la estructura ósea fallará. Tendrías que evolucionar de modo que tus piernas fueran mucho más musculosas y de huesos más resistentes

Pero ése no sería el único problema: tu fisiología de 1,70 ya no serviría, tendrías que tener otro sistema de enfriamiento (motivo por el cual los elefantes tienen grandes orejas para irradiar el enorme calor que generan sus cuerpos, o por el cual los hipopótamos pasan el rato en el agua), tendrías que comer muchísimo más, alterando todo tu aparato digestivo... es decir, te parecerías más a un elefante que a un ágil gigante de cuento.

Estas ideas las desarrolló el biólogo J.B.S. Haldane escribió en 1926 un ensayo donde exploraba la estructura general de los animales y demostraba que para cada estructura hay un tamaño adecuado y una serie de sistemas bastantes para su supervivencia. Mientras más grande se haga un animal respecto de su estructura, más débil se volverá. La forma, la estructura y el tamaño están estrechamente relacionados y son el resultado de la evolución de cada variedad animal.

Así, las fantasías cinematográficas de un aparato que hiciera crecer a las hormigas para crear un ejército invasor resultan biológicamente poco viables. Antes de ser aterradores gigantes, al alcanzar quizá el tamaño de un gato pequeño, se derrumbarían sobre patas incapaces de sostener un peso que se elevaría al cubo cada vez que la longitud de la hormiga se elevara al cuadrado.

El cuerpo humano no está hecho para el gigantismo. Tiene el tamaño que tiene porque es el adecuado para todos sus sistemas biológicos.

Los límites de lo normal

Se estima que la estatura media de los seres humanos es de algo más de 1,66m, con un promedio en hombres de 1,72 y en mujeres de 1,60. Entre los jugadores de baloncesto, el hombre más alto ha sido el rumano Gheorghe Muresan, con 2,31, y la mujer más alta ha sido la polaca Margo Dydek, con 2,18. En términos generales, los hombres miden de media 1,08 veces la estatura de las mujeres.

Los muchos padres del bosón de Higgs

La ciencia no es un emprendimiento individual, ni en el pasado ni en la actualidad, aunque a veces el crédito se lo lleve sólo una persona.

Los codescubridores del campo y bosón de Higgs. De izq. a der.:
Tom Kibble, Gerald Guralnik, Carl Hagen, François Englert y
Robert Brout. (Foto DP de Timm Roetger, vía Wikimedia Commons)
Si uno le pregunta a Peter Higgs, lo llama el “bosón escalar”, y hay otras propuestas para cambiar el nombre de la partícula que varios físicos teóricos postularon en 1964 y que fue hallada, o al menos muy probablemente hallada, en el acelerador de partículas LHC del CERN en la frontera franco-suiza, y anunciada en julio de 2012.

Una de las propuestas es llamarlo “bosón BEHGHK”, que se pronunciaría como “berk” con “r” francesa... o “begk”. Aunque menos eufónico que “bosón de Higgs”, este nombre daría crédito incluyendo las iniciales de los apellidos de todos los científicos que participaron en la descripción de la partícula: Robert Brout, François Englert, Peter Higgs, Gerald Guralnik, Carl Hagen y Tom Kibble. Hagen, por su parte, favorece el nombre “bosón escalar SM” por “standard model” o “modelo estándar”.

El problema es que la costumbre del comité del premio nobel es no dar el premio a más de tres personas, y que los galardonados aún vivan al momento de anunciarse el galardón. Esto ha significado que en muchas ocasiones se han pasado por alto colaboraciones o aportaciones de gran importancia y se han consagrado en la memoria sólo algunos nombres.

En este caso, Englert y Brout fueron los primeros en hacer su aportación teórica en la revista Physical Review Letters en agosto de 1964. En octubre de ese mismo año, y en la misma publicación, aparecía el trabajo teórico de Peter Higgs, más completo y con ecuaciones precisas sobre el mecanismo mediante el cual podía romperse la simetría que según los físicos es una característica esencial de los sistemas físicos. Finalmente, el mes siguiente la misma revista publicaba el artículo de Guralnik, Hagen y Kibble, el más completo de los tres. Todos los artículos demostraban teóricamente la forma en que algunas partículas adquieren masa, una idea que fue consolidándose con el trabajo teórico y experimental de los años siguientes de muchos otros científicos.

La teoría más completa y coherente que tenemos hoy para explicar todos los fenómenos físicos del universo es el llamado “Modelo estándar”, que describe las relaciones entre las distintas partículas elementales y las tres fuerzas que conocemos: la gravedad, la fuerza nuclear fuerte y una fuerza que es al mismo tiempo la electromagnética y la fuerza nuclear débil, conocida como “electrodébil”. Pero para que todo tenga sentido, debía existir una determinada partícula con características precisas responsable de impartir masa a otras partículas, el bosón de Higgs. Su búsqueda desembocó en el diseño, construcción y operación del Gran Colisionador de Hadrones (LHC).

La altamente probable confirmación de la existencia del bosón de Higgs realizada experimentalmente por el LHC claramente era materia de Premio Nobel de Física. Sin embargo, como lo esperaba Carl Hagen, cabeza del tercer grupo de físicos implicados, el comité del Nobel prefirió atenerse a sus reglas y en vez de dar el premio a los cinco científicos supervivientes (Brout murió en 2011) eligió dárselo únicamente a Englert y a Higgs, dejando alguna amargura entre los tres miembros del otro equipo codescubridor.

Descubrimientos simultáneos y nombres olvidados

La ciencia no es un emprendimiento totalmente individual, sino un flujo de conocimientos que van acumulándose e impulsando nuevos hallazgos a veces en direcciones previsibles. Como señaló Newton, los que ven muy lejos lo consiguen a hombros de gigantes. Pero a veces dos son capaces de ver lo mismo simultáneamente, a veces con consecuencias ásperas.

Un ejemplo involucró al propio Isaac Newton, que desarrolló el cálculo prácticamente al mismo tiempo que el matemático alemán Gottfried Leibniz. La controversia sobre si Leibniz había trabajado independientemente del inglés o simplemente había plagiado su trabajo con otra notación matemática amargó los últimos años del alemán. Y aún hoy en día hay quienes lo debaten.

Menos controvertido fue el descubrimiento de la evolución por medio de la selección natural realizado por Alfred Russell Wallace quien mandó sus conclusiones a Darwin antes de que se publicaran los estudios de éste. Darwin promovió la publicación de Wallace y siempre consideró que la nueva teoría era trabajo de ambos, pese a que su confirmación científica de la selección natural era mucho más sólida que las que había alcanzado Russell. Ambos defendieron juntos la idea hasta el final.

Durante 43 años hubo un debate sobre el invento de la tecnología subyacente a la radio. Nikola Tesla había demostrado la transmisión de radio a fines del siglo XIX (aunque su explicación de su funcionamiento era errónea, creyendo que ocurría por la tierra, no por aire) y había obtenido dos patentes clave en 1900 poco antes de Marconi. No fue sino hasta 1943 cuando el Tribunal Supremo de los Estados Unidos reconoció que esas patentes eran las prioritarias, convirtiendo de hecho a Tesla en el inventor teórico de la radio, aunque Marconi fuera quien la desarrolló en la práctica.

Finalmente, aunque quedarían muchos ejemplos en el tintero, está el caso de Rosalind Franklin, la cristalógrafa cuya fotografía por difracción de rayos X de una molécula de ADN fue fundamental para que Francis Crick y James Watson terminaran su modelo de la estructura de doble hélice del ADN en 1953. El Premio Nobel de 1962 por este revolucionario descubrimiento fue para estos dos investigadores, y también para Maurice Wilkins, el otro cristalógrafo que había realizado diversas imágenes del ADN. Rosalind Franklin había muerto en 1958 y su aportación al conocimiento de nuestra genética fue temporalmente opacada. Ahora que se ha rescatado su figura, queda en el relativo olvido su compañero y ocasional rival, Maurice Wilkins.

Estos casos, junto con el de los seis físicos que son padres comunes del bosón de Higgs, nos recuerdan que más allá de los titulares, de los grandes premios y de los tresminutos de fama del informativo televisual, hay muchos otros investigadores sin los cuales no tendríamos el mundo, la esperanza de vida y el conocimiento que distingue a nuestra etapa histórica como la otra cara de la moneda de nuestras dificultades, crisis y problemas.

Si se premiara al LHC

El presidente de la Sociedad Física Estadounidense, Michael Turner, explicaba al Washington Post cuando se anunció el Nobel a Higgs y Englert: “Cada vez más los descubrimientos involucran a una comunidad. Fueron necesarias 10.000 personas y 10 mil millones de dólares para construir el instrumento que hizo este descubrimiento, y sería muy difícil reducir ese grupo incluso a 100 personas, ya no digamos a tres”. Quizá el comité del Nobel tenga que replantearse su regla.

De la saliva a la historia de la Tierra: Nicolás Steno

Un verdadero hombre del renacimiento, o del final del renacimiento, Nicolás Steno, el padre de la geología fue además anatomista, naturalista y tardío obispo.

Hoja conmemorativa de Nicolás Steno,
ofrecida por un congreso de geólogos
en 1881. (Via Wikimedia Commons)
Durante siglos, el hombre conoció unas curiosas piedras llamadas “piedras lengua” o glossopetrae. Plinio el Viejo, en su Historia natural, cuenta que estas piedras caían del cielo en luna menguante, que eran indispensables para la adivinación mediante la luna y que podían detener los vientos tormentosos. En el Renacimiento, por su parte, se creía que eran dientes de dragones y servían como antídoto para mordeduras de serpientes y otros venenos.

En 1666, un joven médico y atento observador de la naturaleza, el danés Niels Stensen (mejor conocido como Nicolás Steno), pudo examinar la cabeza de un tiburón pescado en Livorno, cerca de Florencia, donde él disfrutaba del mecenazgo de Fernando II, Gran Duque de la Toscana. Se dio cuenta de que los dientes del depredador eran muy parecidos a las piedras lengua y pensó que un proceso desconocido había convertido los dientes en piedra.

Pero la idea prevaleciente era que los fósiles eran resultado de una fuerza del interior del planeta, productos de alguna misteriosa actividad del planeta. Steno demostró que los dientes no eran “nuevos”, sino que mostraban evidencias de estar desgastados por el uso, mellados y degradados, lo que señalaba que eran viejos y, por tanto, reliquias de tiempos antiguos. Observó lo mismo en otros fósiles, entre ellos los de origen marino que se encontraban en las cumbres de las montañas, confirmando la idea que Leonardo Da Vinci había ya propuesto 150 años atrás: los fósiles eran los restos de animales que habían vivido en tiempos antiguos.

Esta sola comprobación habría sido suficiente para darle a Stensen-Steno un lugar en la historia de la ciencia. Pero su aportación habría de ser muchísimo más extensa. En parte debido a que se vio impulsado a buscar respuesta a otra pregunta que presentaban los fósiles: ¿cómo es que estaban con frecuencia incrustados en las rocas

El religioso científico

Nicolás Steno nació en Copenhague, capital de Dinamarca, el 11 de enero de 1638, en una opulenta familia de orfebres estrictamente luteranos y estudió medicina tanto en su ciudad natal como en Holanda. Durante sus estudios, cuando apenas tenía 22 años de edad, descubrió el conducto que lleva la saliva a la boca desde la glándula parótida, la mayor de las tres glándulas salivales, situada en la parte posterior de nuestras mejillas, y que por ello se conoce todavía como “conducto de Stensen”.

Terminando sus estudios, se lanzó a recorrer Europa en un peregrinaje que duraría prácticamente toda su vida al tiempo que continuaba con estudios que desafiaban las creencias de la época. Así consiguió descubrir la naturaleza de las contracciones musculares e identificar al corazón como un músculo más, además de que sus disecciones de cerebros demostraron, ni más ni menos, que eran totalmente erróneas las especulaciones de Descartes sobre el cerebro y, concretamente, su idea de que la glándula pineal estaba aislada y en continuo movimiento, que los nervios terminaban en una cavidad que rodeaba a esta glándula y que la sangre iba directamente a ella para preservar su calor, tres afirmaciones que Steno demolió en el Discurso sobre la anatomía del cerebro que impartió en 1665, un año antes de su giro a la geología.

Un descubrimiento adicional que realizó en 1663 fue que la leche materna era producida en el pecho y llevada a los pezones por pequeños conductos.

Dado que el danés consideraba que el método científico le permitía alejarse de la falsedad, no sólo en cuanto a ciencia sino también respecto de la religión, no parecen haberle afectado las contradicciones entre sus descubrimientos y sus creencias religiosas.

Tres años después de su estudio del tiburón, Steno concluyó que para que las rocas envolvieran a los fósiles, debían haber sido líquidas en algún momento para luego solidificarse sobre ellos, o sobre otras capas de roca. Si tal era el caso, la Tierra debía mostrar la presencia de distintos estratos.

El estudioso se dedicó entonces a visitar canteras, minas y cavernas por toda la Toscana, desde Carrara, mítica cuna del mármol más blanco, hasta los Apeninos y las tierras bajas costeras. Producto de sus observaciones fueron los principios o leyes sobre los estratos geológicos que detalló en su escrito Precursor de una disertación sobre un sólido naturalmente contenido en otro sólido, conocido como Prodromus, donde hacía la historia geológica de la región de la Toscana y de ella derivaba los principios básicos que formaron las bases de la geología como disciplina científica.

El primero es el “principio de superposición”, que señala que las capas de roca se depositan unas sobre otras en una secuencia temporal, las más antiguas abajo y las más jóvenes encima, lo que permitía conocer las eras de la existencia de nuestro planeta. El segundo es el principio de “horizontalidad original”, según el cual los sedimentos se depositan como líquidos y, por tanto, lo hacen horizontalmente, rellenando las irregularidades del fondo pero dejando una superficie llana, y que cuando los estratos no se encuentran así se debe a alteraciones posteriores, como terremotos o volcanes. El tercero es el principio de la continuidad lateral, que dice que las capas de sedimentos son continuas a menos que un obstáculo evite que tales sedimentos se extiendan al depositarse.

Una de sus observaciones más relevantes fue que las capas más antiguas, en los estratos más alejados de la superficie, no contenían fósiles. Su conclusión, poco ortodoxa en lo religioso, fue que esas rocas eran anteriores a la aparición de la vida en la Tierra.

Sin embargo, la carrera científica de Steno se detuvo súbitamente. Se había convertido al catolicismo en Italia en 1667, pero en 1675 dio un paso decisivo ordenándose como sacerdote, actividad a la que se dedicó entonces de lleno, tanto que en 1677 fue nombrado obispo y enviado a Alemania, donde murió en 1686, a la temprana edad de 48 años, sin llegar a escribir nunca el magno libro anunciado en su Prodromus de sólo 78 páginas.

Su obra científica fue casi olvidada hasta que en 1823 el naturalista Alexander Von Humboldt lo llevó a la luz pública como el padre de la geología.

Los cristales

Estudiando cristales de distintas sustancias y midiéndolos cuidadosamente, Steno observó que los cristales de diferentes sustancias pueden tener tamaños distintos, pero los ángulos entre dos facetas correspondientes de cada cristal son constantes y característicos de esa especie de cristal. Este descubrimiento originó la cristalografía, que nos permite conocer muchas características de las sustancias observando los cristales que forman.