Artículos sobre ciencia y tecnología de Mauricio-José Schwarz publicados originalmente en El Correo y otros diarios del Grupo Vocento

Huesos: origen y legado

"Mono ante un esqueleto", óleo de Gabriel von Max de alrededor de 1900.
(Imagen D.P., vía Wikimedia Commons)
Los huesos son el testimonio más perdurable que puede dejar un ser vivo. De hecho, sin ellos, mayormente fosilizados, no habríamos podido reconstuir la historia de la vida en nuestro planeta. Pero aún sin fosilizarse, es decir, sin que el calcio del hueso sea sustituido por otros minerales al paso de miles de años, los huesos pueden perdurar durante muchísimo tiempo a la muerte de una persona... se han encontrado huesos de ancestros nuestros de hace 90.000 años en África, donde las condiciones han sido propicias para su conservación.

Curiosamente, tendemos a considerar nuestros propios huesos como estructuras más bien rígidas e inanimadas, como las vigas que sostienen un edificio de hormigón armado, o las columnas y nervaduras que sostienen una catedral gótica. Ciertamente lo son, pero son mucho más que eso: son órganos que cumplen funciones más allá de la simplemente pasiva.

Podemos imaginarnos nuestros huesos como en una red tridimensional formada por colágeno. El colágeno es la proteína más abundante de nuestro cuerpo, ya que es el principal componente del tejido conectivo y está presente de modo importante en tendones, ligamentos, piel, cartílago vasos sanguíneos, el aparato digestivo, los discos intervertebrales, la dentina de los dientes y en nuestros músculos.

En el hueso, el tejido de colágeno está impregnado de minerales de fosfato de calcio y carbonato de calcio, que le dan al hueso su fortaleza y flexibilidad. Si el hueso fuera rígido, sería mucho más fácil que se rompiera, poniendo en peligro la supervivencia del animal. Su flexibilidad le permite precisamente soportar hasta cierto punto distintos tipos de tensión, golpes y retorcimientos.

Esa red de colágeno y minerales de calcio es similar a los modernos materiales compuestos, formados por dos o más materiales de características distintas que juntos ofrecen mayor fuerza, resistencia y adaptabilidad que si estuvieran unidos, es el caso de la fibra de vidrio contenida en una capa de resina o la fibra de carbono incrustada en un plástico. Gracias a esta estructura, el hueso es un tejido tremendamente fuerte pero a la vez muy ligero.

En los huecos de esa matriz ósea encontramos células que producen hueso, que lo reparan y en ocasiones lo destruyen para permitir la reparación o crecimiento: los osteocitos, que son alimentados por una red de vasos sanguíneos dentro del hueso y que también están conectados a células nerviosas que transmiten información como la que se necesita para actuar produciendo hueso en caso de una fractura.

Además, a lo largo del centro de los huesos largos como el fémur hay una cavidad que contiene la médula ósea, un tejido suave que produce las células de la sangre. Esto explica por qué algunos casos de cáncer sanguíneo se tratan mediante trasplantes de médula ósea sana que produce glóbulos sanos.

Pero además de sus características individuales, es importante considerar a los huesos en su conjunto, el esqueleto, formado por 206 de ellos cuando somos adultos. Curiosamente, nacemos con muchos más huesos, unidos entre sí por estructuras resistentes de cartílago. El cráneo del recién nacido cuenta con 45 elementos óseos y la flexibilidad del cartílago permite que pase por el canal del parto. Algnos de estos elementos se fusionan para que, cuando adultos, tengamos sólo 22 huesos craneales. Otros huesos presentes al nacer se fusionan en el sacro, el cóxis o la pelvis.

El proceso de desarrollo y crecimiento es el proceso de osificación de las estructuras que unen a los cartílagos del bebé, que se van alargando y adaptando gracias al trabajo de los osteocitos. No es un proceso rápido, de hecho no termina sino hasta que tenemos más o menos los 25 años de edad, y alcanzamos la estatura que tendremos toda la vida.

Historia de los huesos


La aparición de los huesos fue uno de los disparadores de uno de los fenómenos más asombrosos de la evolución de la vida en la Tierra, la llamada “explosión cámbrica”. Hace 530 millones de años, en un brevísimo período de cinco millones de años (breve en términos geológicos y de la historia de la vida en el planeta) aparecieron súbitamente los animales pluricelulares y dieron origen rápidamente a la mayoría de las grandes variedades del reino animal.

Las causas de esta rápida diversificación después de que durante 3.300 millones de años la vida se hubiera desarrollado lentamente y de modo unicelular están aún por determinarse con claridad, pero entre las más probables está el aumento de la cantidad de oxígeno en la atmósfera terrestre, la formación de la capa de ozono que protege a los seres vivos de la radiación ultravioleta del sol y una serie de erupciones volcánicas bajo los océanos que aumentó la disponibilidad de algunos minerales disueltos en el agua, principalmente el calcio. Los animales empezaron entonces a utilizar este mineral en tejidos de piel modificada en forma de escamas y espinas que los protegieran de los depredadores y, al mismo tiempo, desarrollando mejores armas para ser mejores depredadores, principalmente dientes.

Estos tejidos duros, que en principio eran exteriores o “exoesqueletos” evolucionaron pasando a ser la estructura interna o “endoesqueleto” que nos convierte en una sola familia de animales: los vertebrados. Así, por ejemplo, la piel modificada que formó la protección o cresta neural se convirtió eventualmente en el cráneo y se recubrió de piel. A partir del llamado esqueleto axial (columna vertebral, costillas y cráneo a la aparición de extremidades situadas en cinturones óseos (la pelvis y la escápula) en los peces y que a su vez evolucionaron en las más distintas formas para adaptarse a diversas necesidades.

La historia de los brazos y piernas humanos, así, se encuentra en las aletas y patas de los ancestros que tenemos en común con otros seres vivos actualmente. Y la historia del ser humano pasa necesariamente por los cambios de dos aspectos fundamentales de su esqueleto: el paso a ser un animal que se mueve sobre dos pies y el crecimiento y rediseño de nuestro cráneo para alojar un cerebro de mayor volumen y capaz de cuestionar el universo y entender, incluso, a los huesos que lo sostienen.

El hueso enfermo

La más común afección de los huesos es la osteoporosis o pérdida de densidad ósea, un acontecimiento relativamente normal a una edad avanzada que hace a los huesos frágiles y propensos a romperse, y en ocasiones provoca deformidades e incluso la discapacidad. Hay otros trastornos genéticos o del desarrollo menos comunes. Pero la afección más temida es, por supuesto, el cáncer. Sin embargo, sólo ocurre en un 0,01% de los habitantes, una incidencia muy baja comparada con otras formas de cáncer como el de próstata, que los hombres tienen un 15% de probabilidades de sufrir, o el de mama, que puede afectar al 12,3% de las mujeres.

Cuando se inventaron las flores

"Naturaleza muerta con 12 girasoles", óleo de Vincent Van Gogh
(Imagen D.P. de Bibi Saint-Pol, vía Wikimedia Commons)
Hace unos 125 millones de años, la vida dio un salto asombroso. Ya había plantas y animales, de hecho ya estaba establecido un orden ecológico bastante. Los dinosaurios dominaban la tierra y los mamíferos correteaban por allí esperando su oportunidad cuando apareció la primera flor.

No se trataba, por supuesto, de una flor como las que conocemos hoy, pero era una flor, sus estructuras, su forma, su función eran lo bastante distintos de la planta que le dio origen como para decir que la anterior no tenía una flor pero la descendiente sí contaba con los rudimentos de esta peculiar -y hermosa- estructura.

Esto es un poco como el viejo acertijo huevo y la gallina. Hoy sabemos que un animal que no era todavía una gallina puso un huevo del cual surgió un animal con un pequeño cambio que ya podríamos decir que era una gallina primitiva. Esto, resuelve el acertijo (el huevo fue primero), pero en realidad los rudimentos del cambio van apareciendo tan lentamente a lo largo de la evolución que no es sino una metáfora.

Así, el mundo que dominaban los dinosaurios carecía de flores. Las plantas a su alrededor que se reproducían mediante semillas (y no mediante esporas) eran “gimnospermas”, palabra de raíces griegas que quiere decir “semilla desnuda”. Se llaman así porque sus semillas se desarrollan al aire libre, en la superficie de la planta, que en ocasiones asume formas como las piñas de los pinos, que son algunas de las gimnospermas que aún existen.

Esa flor, o protoflor, es el ancestro común de todas las plantas con flores que conocemos en la actualidad: más de 400.000 especies con una asombrosa variedad en su aspecto y sus órganos: flores con simetría radial como la proverbial margarita, o con simetría bilateral como las orquídeas (que, por cierto, fascinaban a Darwin), o cuyos pétalos crecen siguiendo las exquisitas matemáticas de la secuencia de Fibonacci, como las rosas; con todos los colores que podemos ver y alguno que no podemos ver, como el ultravioleta, que sin embargo loa polinizadores como las abejas sí aprecian claramente, en diversos tamaños y con diversos grados de evolución que han ido separándose de ese misterioso diseño original de la primera planta con flores, que aún no conocemos.

Las plantas con flores se llaman “angiospermas”, es decir, cuyas semillas están contenidas en un espacio cerrado, el ovario de la planta. Esos ovarios son los frutos de la planta, y también tienen gran cantidad de formas según la estrategia que utilizan para esparcirse.

Cuando hablamos de “estrategia” es importante recordar que es una metáfora para resumir cómo el proceso evolutivo ha resuelto desafíos para continuar la vida. Así, el diente de león cuyos frutos desarrollan delicados paracaídas (llamados “vilanos”) tiene una “estrategia” para esparcir sus semillas mediante el viento. Si todas las semillas cayeran alrededor de la planta madre, competirían con ella y entre sí, y acabarían perjudicando sus posibilidades de sobrevivir. Las frutas usan la “estrategia” de ofrecer un alimento deseable a los animales, con semillas que no pueden digerir al comerlas y que se depositan en otro lugar, con las heces del animal, que además pueden ser útiles como abono.

Independientemente de que nos parezcan hermosas, las flores son ante todo estructuras prácticas. La flor es el aparato reproductor de las plantas angiospermas y sus frutos son el ovario maduro de la planta, en ocasiones con otros tejidos. Hay frutos secos, como las nueces, los cacahuetes o el trigo, y frutos carnosos como la manzana, la naranja, o el tomate. El fruto es el destino final, pues, de las flores.

Pero, en el principio, la flor tiene por objeto atraer a los polinizadores y para ello, de nuevo, emplean diversas estrategias. Las que son polinizadas por insectos generalmente tienen pétalos de colores brillantes y un aroma que atrae a abejas, mariposas, moscas y avispas, entre otros insectos. En cambio, las flores que son polinizadas por mamíferos como los murciélagos o algunas polillas tienen pétalos blancos y un olor muy fuerte, y las que son polinizadas por aves tienden a tener pétalos rojos y no suelen tener aromas.

La estructura básica de las flores implica cuatro órganos: los sépalos, hojas verdes alrededor de la base de la flor, los pétalos, los estambres o androceo, que producen los granos de polen, que son las células masculinas de las flores, y el gineceo, que incluye el ovario y el camino que lleva a él, el “estilo”. Los polinizadores atraídos por cualquiera de las estrategias de las flores depositan en el gineceo el polen de otras flores que han visitado y, al mismo tiempo, recogen el polen de la flor en sus patas, plumas, picos y otras partes del cuerpo, que llevarán a otras flores.

¿Por qué hacen esto los animales? A veces usan las flores como refugio o como lugar donde aparearse, pero en la mayoría de las ocasiones visitan las flores porque éstas producen el néctar del que se alimentan. Así, se crea una especie de complicidad a lo largo del tiempo, de cientos de miles y millones de años, entre algunos polinizadores y las flores que visitan.

Fue precisamente una flor la que dio la primera prueba sólida y predictiva de la teoría de la evolución. Debido a su pasión por las orquídeas, Darwin recibió en 1862 el obsequio de unos curiosos ejemplares procedentes de Madagascar: Angraecum sesquipedale, o la orquídea navideña, cuyo nectario tiene un cuello de una longitud enorme, de hasta 35 centímetros. ¿Cómo podría alimentarse un animal de ese nectario para funcionar como su polinizador? Darwin sugirió que, como otros polinizadores que evolucionaban conjuntamente con las flores de las que se beneficiaban, seguramente existía en Madagascar alguna polilla con una trompa excepcionalmente larga.

En 1907 se descubrió en Madagascar una polilla que se ajustaba a la predicción de Darwin, tanto así que en su nombre se incluyó la palabra “predicha” en latín: Xanthopan morgani praedicta. Aun ya teniéndola, no fue sino hasta 1992, 130 años después, que se observó que, efectivamente, esa enorme polilla se alimentaba de la orquídea navideña, confirmando la predicción de Darwin.

El ADN de las plantas

El origen de las plantas no empezó a comprenderse con claridad sino hasta 2013, al concluir el proyecto para la secuenciación del genoma del arbusto Amborella, el más antiguo ancestro común de las plantas actuales. Al comparar su secuencia de ADN con otras 20 se pudo determinar que hace alrededor de 200 millones de años las plantas que producían semillas experimentaron una duplicación genética, empezaron a tener el doble de genes que sus ancestros, lo que permitió que algunas estructuras de la planta se desarrollaran hasta crear las flores, con alrededor de 1180 genes nuevos que no están en otras especies de plantas.