Artículos sobre ciencia y tecnología de Mauricio-José Schwarz publicados originalmente en El Correo y otros diarios del Grupo Vocento

El casi inexistente neutrino

Llenado de agua del gigantesco observatorio Kamiokande en 2006. Cada semiesfera
plateada es un fotomultiplicador-detector de neutrinos.
(© Kamioka Observatory, ICRR (Institute for Cosmic Ray Research), The University of Tokyo)
Miles de millones nos atraviesan a cada segundo sin que lo notemos, sin que lo podamos notar, pues los neutrinos son la más extraña de las partículas elementales (el zoo de partículas) que componen nuestro universo. Los neutrinos son la partícula con masa más abundante del universo, sólo por debajo de los fotones, que componen la luz y que no tienen masa. Se producen en las reacciones nucleares, tanto de fusión como de fisión (la mayor fuente de neutrinos que tenemos al alcance es nuestro propio sol) y en las supernovas cuando estallan.

Los neutrinos tienen masa. Muy pequeña. Tanto que hasta 1998 se pensaba que no la tenía, que era una especie de partícula fantasma. Estas partículas no tienen carga eléctrica, viajan casi a la velocidad de la luz y son tan pequeños. Hacen falta diez millones de ellos para tener la masa de un electrón. Esas características han hecho tan difícil su estudio, ya que los neutrinos prácticamente no interactúan con el resto de la materia. Los neutrinos no son afectados así por dos de las cuatro fuerzas fundamentales del universo, la electromagnética y la fuerza nuclear fuerte. Sí les afecta la fuerza nuclear débil, pero ésa sólo tiene efectos en distancias muy cortas, y sí les afecta la gravedad mínimamente, en relación a su masa. Así que no suelen afectar a otras partículas ni, a su vez, verse afectados por ellas. Casi todos los neutrinos que llegan a la Tierra pueden atravesarla de lado a lado sin interactuar con ninguna otra partícula a su paso, como una nave viajando en el espacio no podría encontrarse al azar con casi ningún cuerpo estelar. Vale la pena recordar aquí que lo que nos parece materia sólida (y líquida) en realidad está formada principalmente por espacio vacío.

Pero, pese a ser tan pequeño y tan etéreo, el neutrino es fundamental para entender el universo a nuestro alrededor. Por poner sólo un ejemplo, si podemos determinar el origen de los neutrinos que llegan a la Tierra, quizá podríamos determinar de dónde proceden los rayos cósmicos que nos bombardean incesantemente, rayos de una enorme energía, tanta que no la hemos podido reproducir en nuestros laboratorios.

La existencia de lo que hoy llamamos neutrino fue propuesta en 1931 por el físico teórico Wolfgang Pauli, uno de los pioneros de la física cuántica y Premio Nobel en 1945. En sus cálculos, determinó que la energía no parecía conservarse en la desintegración radiactiva llamada “beta”, donde un neutrón del núcleo de un átomo radiactivo se convierte en un protón y un electrón. En el proceso radiactivo se había perdido algo de energía. Y como la energía ni se crea ni se destruye, Pauli pensó que podría haber sido tomada por una partícula neutral en aquellos años indetectable. Tres años después, otro físico, Enrico Fermi, le dio a esa partícula el nombre de “neutrino”, es decir, “el pequeño neutral”, que era fundamental para explicar la desintegración radiactiva tal como se observaba en los experimentos realizados por entonces.

Pero fue necesario esperar hasta 1956 para que Clyde Cowan y Frederick Reines consiguieran demostrar la existencia de dichas partículas utilizando un reactor nuclear como fuente de neutrinos. El descubrimiento de los llamados “neutrinos electrones” le valió a Reines el premio Nobel de física por su parte en el descubrimiento. Desafortunadamente, como ha ocurrido en otros casos, la muerte prematura de Cowan le impidió ser galardonado con el premio, ya que no se otorga post mortem.

Los neutrinos también se pueden encontrar en otras formas o “sabores”, el neutrino muón (hallado en 1961 por Leon Lederman, Melvin Schwartz y Jack Steinberger, en el CERN, hoy famoso por su acelerador de partículas, el LHC), y el neutrino tau, extremadamente escaso y de vida muy corta, que no pudo observarse sino hasta el año 2000 también en el CERN.

La característica más peculiar de los neutrinos es que, a diferencia de las demás partículas elementales, están “oscilando” continuamente, es decir, cambiando de sabor. Y, además, pueden tener una mezcla de sabores, es decir, pueden tener parte de neutrino electrón y parte de neutrino muónico.

Decíamos que casi todos los neutrinos que llegan a nuestro planeta lo atraviesan sin interactuar con ninguna partícula. Para percibir a algunos de los pocos que sí interactúan, sin embargo, necesitamos sistemas enormes que estén aislados de otras formas de radiación. Para ello, los observatorios de neutrinos se ubican a gran profundidad en la tierra, donde no pueden llegar los rayos cósmicos y otras partículas.

Uno de los observatorios de neutrinos más impresionantes que existen es el Super Kamiokande, aunque no se parece a nada de lo que solemos llamar observatorio. Se trata de un tanque cilíndrico de acero inoxidable de 40 por 41 metros situado a mil metros de profundidad, en la antigua mina de Mozumi, que contiene 50.000 toneladas de agua ultrapura. El tanque está rodeado por más de 11.000 tubos capaces de multiplicar cualquier pequeñísimo destello de luz decenas de millones de veces. El funcionamiento del observatorio es el siguiente: cuando ocurren eventos como la desintegración de un protón o que una partícula colisione con un electrón o el núcleo de un átomo del agua, éstos provocan un cono de luz. El fenómeno, llamado “radiación de Cherenkov”, es percibido como un tenue anillo de luz por los tubos detectores. los datos de los distintos tubos que registran la luz permiten saber qué partícula los ha provocado. Estos detectores, por ejemplo, consiguieron registrar, en 1987, 11 neutrinos provenientes de la explosión de una supernova.

¿Qué relación tienen los neutrinos con las partículas a las que están asociados (electrón, muón, tau)? ¿Por qué y cómo oscilan o cambian de uno a otro mientras recorren el universo a velocidades tan enormes? ¿Tienen que ver los neutrinos, como algunos físicos sospechan, con la materia oscura y la energía oscura que forman el 95% de nuestro universo y que aún no hemos podido detectar? Éstas son algunas de las preguntas que animan la investigación de los neutrinos. Enormes, costosos, delicadísimos aparatos a cargo de mujeres y hombres altamente preparados que investigan unas partículas casi inexistentes.

En la cultura popular

En 1959, el poeta estadounidense John Updike escribió un poema sobre los neutrinos que ya decía que para ellos “la tierra sólo es una bola sin sentido”. En 1976, la banda canadiense de rock progresivo Klaatu grabó la canción El pequeño neutrino, de Dee Long, que desafiantemente dice “Yo mismo me niego a ser / soy alguien a quien nunca conocerás / Soy el pequeño neutrino / Y ahora estoy atravesando / Al que se conoce como tú / Y sin embargo nunca sabrás que lo hago”. Visto así, no deja de ser levemente inquietante.

De la inmunidad al SIDA a la curación

Virus del VIH saliendo de una célula humana
donde se ha reproducido. (Imagen D.P. National
Institutes of Health, EE.UU. vía Wikimedia
Commons)
El 1% de los seres humanos puede exponerse a la infección de VIH sin ser infectado. El retrovirus entra efectivamente en su cuerpo, pero no puede actuar, no puede reproducirse (proceso en el cual destruye los glóbulos blancos que ataca, precisamente los responsables de nuestro sistema inmune) y por lo tanto estas personas nunca desarrollan el SIDA como enfermedad. Son inmunes a la epidemia.

Fue a principios de los 1980 cuando apareció el virus de la inmunodeficiencia humana (VIH), que destruye el sistema inmune de sus víctimas, dejándolas indefensas ante las infecciones, el temido síndrome de inmunodeficiencia adquirida, SIDA. Y las víctimas de SIDA tenían una esperanza de vida reducidísima, la enfermedad parecía ser altamente contagiosa, sobre todo mediante agujas infectadas (cebándose en los drogadictos más extremos) y a través del contacto sexual. Las historias se multiplicaban en los medios, alentadas por las muertes de personajes famosos como Rock Hudson o Freddie Mercury. Por si fuera poco, la epidemia comenzó a desarrollarse entre la comunidad homosexual, lo que animó los ataques de homofóbicos.

Adquirir el VIH, un peculiar retrovirus, conducía entonces inevitablemente al SIDA y éste era mortal en poco tiempo, meses, incluso, matando a través de “infecciones oportunistas” que se aprovechan de la debilidad del sistema inmune de los pacientes.

Las costumbres cambiaron y los controles se multiplicaron: en bancos de sangre, hospitales y consultorios. El condón se generalizó como principal barrera al contagio del VIH, aparecieron guantes de goma en las manos de todos quienes pudieran tratar con sangre de otras personas. Y el debate se incendió en lugares como algunos países africanos, donde las creencias religiosas opuestas al uso del condón ayudaron a que la epidemia se difundiera. No fue sino hasta 1999 cuando aparecieron tratamientos que, sin curar el VIH, consiguen mantener al virus bajo control dando a las víctimas una esperanza de vida similar a la media.

En este panorama, el descubrimiento de que hay una proporción de seres humanos que son inmunes al VIH fue no sólo una sorpresa sino también una esperanza en su tratamiento.

El secreto de la resistencia

Un virus como los del VIH (hay dos tipos distintos), al entrar en el torrente sanguíneo, se fija a la superficie de la célula que infecta, en este caso los linfocitos T colaboradores, y puede introducir su ADN en la célula secuestrando su dotación genética para que haga copias del virus, que a su vez atacan a otras células. El VIH, en concreto, se fija en proteínas de la superficie de las células, como las llamadas CD4 y CCR5. Esta última se ha comparado con una cerradura que puede abrir el virus para entrar en la célula. Pero resulta que, en algunos casos, el gen que produce la proteína CCR5 ha experimentado una mutación, llamada CCR5-delta32 que ha borrado algunas instrucciones para formar la proteína.

La CCR5 que producen esas células mutadas no es funcional, de modo que el virus no puede instalarse en la célula ni introducir su carga genética en ella. La célula (es decir, el linfocito T que juega un papel esencial en las defensas del cuerpo) es inmune al VIH. Como tenemos dos copias de cada cromosoma y de cada gen, es necesario que el individuo tenga la mutación en ambos genes CCR5. De otro modo, la proteína sería producida correctamente por uno de los cromosomas en que está alojado el gen (el 21) y el virus podría infectar a la célula. Quienes sólo tienen la mutación en uno del par de cromosomas, son sin embargo más resistentes a las infecciones.

¿Cuándo surgió esa mutación y por qué se ha mantenido? Las hipótesis han cambiado con el tiempo. Su origen parece encontrarse entre los vikingos, pues al hacer estudios sobre la proporción de personas con la mutación, los países nórdicos tienen los mayores números, lo que sugiere que apareció allí y se fue extendiendo como una onda lentamente hacia las poblaciones que iban teniendo contacto con ellos.

Originalmente, se pensó que la mutación había sido favorecida como protección contra la peste negra que asoló Europa en la Edad Media, pero hoy los científicos hallan más viable es que haya sido una mutación que protegía contra la viruela. Es decir, una mutación que resultó beneficiosa por un motivo en el pasado lo es hoy nuevamente por otro motivo.

El descubrimiento de esta forma de inmunidad abrió por primera vez la puerta a una posible curación del SIDA, que se intentó con el llamado “Paciente de Berlín”, Timothy Ray Brown, diagnosticado con VIH en 1995 y que había estado tomando la terapia antirretroviral hasta que en 2006 desarrolló un tipo de leucemia. Se le sometió entonces a un procedimiento experimental, transplantándole células madre hematopoyéticas, es decir, que dan origen a todos los tipos de células sanguíneas que tenemos, en la médula ósea. Esas células madre produjeron, entre otras, linfocitos T colaboradores con CCR5 mutada no funcional en su superficie, atacando los dos problemas de salud graves de Brown: la leucemia y el VIH.

Cien días después del primer trasplante, el VIH había prácticamente desaparecido de su cuerpo, y así se ha mantenido hasta la fecha, considerándolo el primer ser humano curado de HIV.

¿Por qué no se usan estos trasplantes para todos los pacientes de VIH? Primero, porque aún no hay certezas, siempre es posible que el paciente recaiga. Y el trasplante es en sí un procedimiento peligroso que puede tener complicaciones a corto y largo plazo, tales como infecciones, rechazo, procesos inflamatorios e incluso provocar otro cáncer.

La curación del “paciente de Berlín” sigue siendo un experimento, pero tanto Brown como muchos científicos han emprendido acciones para buscar la curación definitiva del SIDA (que sería además un gran paso adelante en el combate de las enfermedades virales) a partir de esa mutación, ese cambio al azar que para muchos ha sido la diferencia entre la vida y la muerte.

La evolución en acción

La mutación CCR-delta32 es un excelente ejemplo de la selección natural en acción dentro de nuestra propia especie, en el incesante –pero extremadamente lento- proceso evolutivo. En el pasado, la ventaja de inmunidad a alguna enfermedad claramente favoreció a quienes ya tenían la mutación de modo que pudieron reproducirse un poco más que quienes no la tenían, difundiéndola y ampliando su presencia en nuestra especie. Si no tuviéramos las herramientas de la ciencia y la medicina preventiva, no es difícil pensar que el SIDA podría diezmar a la población mundial como lo ha hecho en algunas zonas de África, donde resultarían mucho más favorecidos los que poseen la mutación, de modo que en un futuro la mayoría de los seres humanos serían descendientes de estos inmunes y tendrían por tanto la mutación.