Artículos sobre ciencia y tecnología de Mauricio-José Schwarz publicados originalmente en El Correo y otros diarios del Grupo Vocento

Cuando tener comida es un problema

El hombre ha vivido temiendo la escasez de alimentos. Pero las sociedades de la abundancia albergan hoy condiciones paradójicas, como la bulimia y la anorexia.

Los recientes fallecimientos de cinco jóvenes brasileñas con el anhelo de recorrer las pasarelas como modelos y las restricciones sobre el índice de masa corporal impuestas a las modelos en las pasarelas españolas e italianas han subrayado nuevamente el problema que en algunas sociedades están presentando los desórdenes alimenticios con origen psicológico.

La historia humana, salvo en algunas sociedades, ha sido una de ciclos de escasez y abundancia que marcaron los acontecimientos. Por ejemplo, se considera que la gran hambruna en Egipto provocada por la reducción en las inundaciones del Nilo a mediados del siglo 22 antes de nuestra era fue una de las causas principales del colapso del antiguo reino. El hambre puede haber también jugado un papel esencial en la caída de muchas civilizaciones en todo el planeta, incluida la de los antiguos mayas, y juega un importante papel en el imaginario colectivo incluso en Europa, cuando la última hambruna grave ocurrió durante la Segunda Guerra Mundial. Hambrunas recientes como la de 1958-1961 en China con más de 30 millones de muertes, las de las décadas de 1970 y 1980 en África o la de Corea del Norte a mediados la década de 1990 son una clara muestra de que la abundancia que generan el conocimiento, la tecnología y los avances de la ciencia sigue estando lejos del alcance de la mayoría de los seres humanos.

En tiempos ya sea de abundancia o de escasez, siempre ha habido casos de personas que voluntariamente se someten al hambre. Las religiones que consideran que el dolor, el sacrificio, la humillación y la automutilación son agradables a sus deidades o un buen camino para la superación espiritual suelen incluir el ayuno voluntario como forma de adoración o ejercicio espiritual, y esta idea en ocasiones es llevada al extremo por seguidores especialmente fervientes. En algunos países asiátcos, se sabe de monjes budistas que se han suicidado mediante la privación de alimentos, y es conocida la historia de la monja católica supuestamente estigmatizada Catherine Emmerich, que afirmaba alimentarse únicamente de una hostia consagrada al día. Igualmente, y en un tono más humano, durante las más graves hambrunas no es infrecuente que algunas personas opten por entregar sus alimentos a las personas que aman, especialmente a sus hijos.

Pero la supresión de la alimentación por motivos psicológicos, voluntarios y no sujetos a creencias religiosas o a escasez ha sido históricamente menos frecuente. Según algunos expertos, lo que hoy conocemos como anorexia nerviosa es una afección descrita por primera vez en Londres en 1689 por Richard Morton, que hablaba de una "consunción nerviosa" ocasionada por "tristeza y preocupaciones de ansiedad", pero no hay forma de saber si el origen de los desarreglos observados por Morton es el mismo que hoy es causa de alarma principalmente en las sociedades occidentales. Ciertamente, los síntomas que describió Charles Lasègue en Francia en 1873 sí parecen los mismos que hoy afectan a muchas chicas, aunque no es sino hasta la década de 1930 cuando los investigadores encuentran las raíces emocionales de la anorexia que hoy caracterizan a esta disfunción.

La anorexia nerviosa se caracteriza porque el paciente (generalmente mujer, pero no de manera exclusiva) se percibe a sí mismo como alguien con exceso de peso y, a la búsqueda de un aspecto "ideal" se priva de alimentos, en ocasiones dejándose llevar por un exceso de comida consumida descontroladamente en una hora o dos, que suele ser seguido por la lucha por eliminar esa comida, ya sea mediante purgantes o eméticos para provocar el vómito. Aunque también hay referencias históricas al vómito autoinducido, como en el caso de los antiguos griegos y romanos, esta antigua práctica no contenía el elemento de "lucha" contra el alimento, sino que era solamente una forma de vaciar el estómago para poder seguir comiendo en orgías y bacanales, y por tanto se trata de cosas sin relación entre sí. Cuando comer descontroladamente y purgarse es un hábito recurrente, incluso en personas que no sufren de anorexia, se conoce como "bulimia nerviosa", y ambas afecciones con frecuencia se sobreponen en las mismas víctimas. A esto se añaden prácticas supersticiosas surgidas de ideas como la de que el cuerpo "acumula toxinas" y que para "limpiarlo" hace falta un ayuno periódico, afirmación muy común entre ciertas creencias relacionadas con el new age pero que no tiene ninguna base en el funcionamiento real del cuerpo, sin contar con que los proponentes de estas ideas nunca han podido identificar química o biológicamente a ninguna de las "toxinas" de las que hablan.

Esto muestra que la anorexia y la bulimia tienen un componente social muy importante. Así como las mujeres victorianas experimentaban anorexia por temor a que su apetito por la comida se confundiera con un "excesivo" apetito sexual además de existir el mito que comer en abundancia provocaba "fealdad", las víctimas de la anorexia y la bulimia hoy consideran que deben responder a un ideal de belleza que se decide más en los ateliers de diseño de moda y en las compañías publicitarias que en la interacción cotidiana. Estos ideales, unidos a una baja autoestima, se encuentran en la raíz de gran parte de los casos, como lo demuestra el hecho de que la anorexia y la bulimia se concentran en los países de la abundancia y en los sectores de las clases medias y altas de los países más pobres, que se identifican cultural y socialmente con las grandes metrópolis económicas.

El índice de masa corporal


Lo que hoy llamamo "índice de masa corporal" (IMC) es una medición estadística desarrollada a mediados del siglo XIX por el erudito belga Adolphe Quetelet (por lo que también se le conoce como "índice Quetelet", y es básicamente el peso de una persona en kilogramos dividido entre el cuadrado de su estatura en metros o sea kg/m2. En 1996, la Organización Mundial de la Salud decidió emplear esta medición para determinar los niveles de desnutrición de las poblaciones. En el caso de personas adultas con una complexión media, se considera que un valor de menos de 15 indica inanición, hasta 17,5 revela anorexia, hasta 18,5 falta de peso, de 18,5 a 25 un peso normal, hasta 30 hay sobrepeso, hasta 40 hay obesidad y en más de 40 hay obesidad mórbida. En el caso de personas de huesos muy anchos o delgados, o con gran musculatura (como los fisiculturistas), puede haber variaciones mayores que no revelen anormalidad. El límite de las pasarelas, fijado en 18, es, de todas formas, el correspondiente a una ligera falta de peso.

Clima y cambio climático

La meteorología ha avanzado a grandes pasos, y sin embargo, aún falta mucho por andar para saber si lloverá mañana... y quizá no podamos llegar a saberlo nunca.

En abril de 2006 se lanzó un innovador sistema de seis microsatélites destinados a la observación meteorológica, de la ionosfera y del clima, COSMIC, por sus siglas en inglés. Considerados como el más preciso y estable termómetro para medir el cambio climático, estos microsatélites pueden "ver" a través de la capa de nubes y obtener datos precisos sobre la temperatura y la presencia de vapor de agua en más de mil puntos del planeta cada día, con expectativas de alcanzar los 2.500 diarios en 2007. Los científicos esperan que este sistema de satélites mejore sensiblemente la capacidad humana para prever el comportamiento de huracanes y tifones, así como mejorar las predicciones del tiempo a largo plazo y monitorizar con una exactitud sin precedentes el cambio climático de nuestro planeta.

El conocimiento previo de las condiciones climáticas del futuro, y de ser posible su control, son viejos sueños humanos. Ante los hechos clarísimos de los cambios que traen las estaciones, la temporada de calor, la temporada de lluvias, la temporada de frío, nació el deseo por conocer con más precisión el tiempo que haría en lugares delimitados en momentos concretos, una tarea bastante más difícil que prever que en agosto hará calor en el hemisferio norte (y frío en el sur). La forma de las nubes, el color del sol o del cielo, el vuelo de las aves, los dolores reumáticos y otros elementos a cual más diverso fueron utilizados para intentar conocer detalladamente el clima por venir y prepararse para él. Y cuando fallaban las expectativas normales y las lluvias se retrasaban, por ejemplo, se acudía a un mago o brujo que afirmaba poder provocar la lluvia, aunque generalmente lo único que hacía era tiempo hasta que finalmente llovía, apuntándose el tanto.

Pero no fue sino hasta 1904 cuando el científico noruego Vilhelm Bjerknes propuso que el clima podría pronosticarse a partir de cálculos basados en las variables observables, muchas de ellas no conocidas en la antigüedad, como las variaciones de la presión atmosférica. La presión, la composición atmosférica, las mareas, el calor del sol, el calor del núcleo terrestre, la cantidad de vapor de agua presente en una zona u otra, son algunos de los elementos que influyen en el clima en general, más otros muchos aspectos que determinan el microclima, es decir, el clima en un lugar muy específico. En una ciudad mediana, por ejemplo, puede llover en un barrio mientras que otro, a un par de kilómetros, goza de sol pleno durante todo el día. De este modo, la predicción del clima para Donosti, para Asturias o para Málaga es en realidad una gran generalización que no es aplicable a todos los puntos de tales comunidades, ya no digamos cuando se pregunta qué clima hace en Francia o en Argentina.

Los meteorólogos, siguiendo la propuesta de Bjerknes, se han ocupado sin embargo de tratar de recopilar la mayor cantidad de datos posibles de la atmósfera para conseguir niveles de predicción que comparados con los que eran posibles hace cien años sólo pueden calificarse de asombrosos. Los satélites meteorológicos no sólo nos señalan la dirección y fuerza de los vientos, que trasladan nubes y provocan cambios en la presión atmosférica, sino que además nos permiten conocer la temperatura de distintos lugares tanto en la superficie terrestre como en la parte superior de las nubes, y los satélites que utilizan el radar pueden saber la ubicación e intensidad de las precipitaciones en distintos lugares, para calcular su comportamiento posterior.

Entre las variaciones del clima difíciles de predecir, y de consecuencias aún en proceso de estudio, una de las más notables es la conocida como "El Niño" y "La Niña", un notable aumento o disminución, respectivamente, de la temperatura de las aguas superficiales en la zona tropical del Océano Pacífico oriental, con un ciclo irregular de 2 a 7 años y que afecta la cantidad de lluvia que cae en gran parte del hemisferio Sur y en toda la costa Pacífica del continente americano, además de que después de un episodio de El Niño, se ha observado que hay veranos especialmente cálidos en el hemisferio occidental. Cuando se presenta el fenómeno continuadamente durante dos años, puede reducir seriamente las lluvias monzónicas, lo que a su vez ha sido causa de hambrunas en el subcontinente indio. Actualmente, hay un episodio moderado de El Niño en curso, y se espera que continúe hasta bien entrado 2007.

Existe la idea de que, en última instancia, la predicción exacta del clima es imposible dado que depende de las sutiles interrelaciones de muchísimas variables, que interactúan de modo complejísimo, de modo que es posible que cambios muy pequeños en un sitio se multipliquen ocasionando grandes alteraciones del clima al otro lado del mundo, ejemplo que suele darse para explicar los planteamientos de la "Teoría del caos" de las matemáticas y la física, el "efecto mariposa" según el cual podría ser que el aleteo de una mariposa en Brasil podría ocasionar un tornado en Tejas, como lo planteó el matemático y meteorólogo Edward Lorenz en los años 70. La teoría del caos explica, sin embargo, por qué en ocasiones el clima no se comporta según lo predico, pero no puede explicar cómo predecirlo efectivamente.

Entretanto, la recopilación e interpretación de los datos sobre nuestro planeta nos permite sin duda ser un poco más precisos cada vez. Para ello, el diseño, lanzamiento y operación de satélites meteorológicos sigue siendo una actividad que puede impactar la economía, la vida, la alimentación y las expectativas de millones de seres humanos, por lo que avances como el sistema COSMIC son asunto de importancia para todos, aunque no lo sepamos.

¿De quién es culpa el calor?


El "calentamiento global", un fenómeno cuyas causas aún está a debate en el mundo académico, aunque al parecer es al menos en parte responsabilidad de la actividad humana que genera grandes cantidades de bióxido de carbono, es un aumento en la temperatura promedio de todo el planeta, más notable en la tierra que en los mares, de aproximadamente 0,25 grados centígrados cada década. Los posibles efectos de este calentamiento gradual pueden ser muy serios para la vida humana y para las relaciones ecológicas del planeta, pero ciertamente ese "calentamiento global" o "cambio climático" no es el causante de las temperaturas singulares que estamos experimentando y que han representado promedios de dos y tres grados por encima de la media. Y nada asegura que se trate de una tendencia y no una variación normal en ciclos climáticos más largos que los registros de los que disponemos desde hace apenas trescientos o cuatrocientos años.

La ciencia en 2006

Algunos de los avances y logros del conocimiento que hicieron historia en el año que acaba de terminar.

El esfuerzo por obtener conocimiento sigue acelerándose en el mundo, aunque los bajos presupuestos dedicados a la investigación en muchos países nos dicen que aún se podría avanzar mucho más rápidamente. De hecho, la velocidad del conocimiento es tal que, diariamente, un sitio web como Science Daily informa de más de 50 noticias altamente relevantes en distintos campos de la ciencia y la tecnología. Dado que es imposible hacer un resumen de los miles de logros científicos en 2006, seleccionamos los momentos relevantes de algunas disciplinas.

Medicina: el cáncer El mal que más temor causa entre grandes grupos humanos recibió un devastador golpe en 2006 al empezar a aplicarse la vacuna contra ciertas formas del virus del papiloma humano, VPH o papilovirus, responsables del 70% de los casos de cáncer cervicouterino, que a su vez es una de las principales causas de muerte por cáncer entre las mujeres. El éxito de esta vacuna ha servido además como impulso para el apoyo a otras vacunas que pretenden combartir otras formas de cáncer.

Evolución: del mar a la tierra En abril se informó que un grupo de paleontólogos descubrió en el ártico canadiense los restos fósiles de un pez, denominado Tiktaalik roseae, que muestra algunas de las carácterísticas de los animales terrestres cuadrúpedos, los terápodos, como la presencia de un cuello y un cráneo aplanado similar al de un cocodrilo, al tiempo que posee las escamas y aletas de un pez, aunque su aleta pectoral ya tiene la estructura del brazo de un terápodo, lo que lo convierte en un animal llamado "transicional" que viene a completar el registro fósil que va de los peces a los primeros animales terrestres, hace entre 365 y 385 millones de años.

Astronomía: envíos de la Cassini La nave Cassini, llamada así en honor al astrónomo Giovanni Cassini del siglo XVII, aportó imágenes asombrosas de Saturno tomadas con radar, no sólo con luz visible, y además nos está enviando hoy mismo, imágenes asombrosas de Titán, la mayor luna de Saturno, con dunas como las de la Tierra y sugiriendo, según se anunció a principios de 2007, que esa luna tiene lagos de metano líquido.

Paleoantropología: el primo Neandertal En mayo, Svante Paabo, del Instituto Max Planck de Antropología Evolutiva de Leipzig, Alemania, anunción que había conseguido secuenciar muestras de ADN de un individuo neandertal, y en noviembre se dieron los primeros resultados, indicando que la secuencia de ADN indica que el neandertal y nuestros antepasados se separaron hace medio millón de años, confirmando de manera clara que el neandertal es una especie humana distinta de la nuestra.

Biología: biodiversidad Aunque cada año se encuentran y describen cientos de nuevas especies, durante 2006 destacó, por cuestiones de números, que más de 50 nuevas especies animales y vegetales se describieran únicamente en Borneo, 52 nuevas especies en los mares de Nueva Guinea y 12 especies de peces en Venezuela. Por calidad, un descubrimiento singular fue el de las "ratas de la roca" de Laos, denominado Laonastes aenigmamus, porque representa a una familia que se creía extinta desde hace 11 millones de años, los Diatomydae.

Planetología: agua en Marte A fines de diciembre, los científicos que estudian Marte con ayuda de diversas sondas espaciales anunciaron que habían descubierto que en los últimos siete años se habían formado depósitos en hondonadas marcianas, comparando fotografías de 1999 y de ahora. Anunciaron así que su conclusión era que la causa más probable de esos depósitos era el flujo de agua, reavivando así el interés por la posibilidad de que haya alguna forma de vida, así fuera muy primitiva, en el planeta rojo.

Cosmología: la materia oscura existe Dado que según nuestros conocimientos el universo, para ser como es, debe contener mucha más materia de la que podemos observar, se propuso que gran parte del universo debería estar hecho de "materia oscura" o no visible. En 2006, se comprobó la hipótesis al observar el choque de dos grupos de galaxias. Un equipo de astrónomos de la Universidad de Arizona pudieron observar que el fenómeno de "lente gravitacional" (desviación de la luz por un intenso campo gravitacional) era muy superior al que provocaría sólo la materia de ambos grupos de galaxias. Ahora queda la enorme tarea de determinar cuál es la composición de esa materia oscura, que no vemos, pero que forma el 90% de nuestro universo.

Informática y neurociencias: mando a distancia En julio, se anunció que un equipo de neurólogos y diseñadores de microprocesadores habían conseguido implantar exitosamente en un paciente cuadrapléjico un chip sensor que le permite controlar a distancia el ratón de un ordenador y realizar todas acciones como abrir el correo electrónico o jugar un videojuego sencillo. El chip, con 100 diminutos electrodos, está implantado en la corteza motora del paciente, e interpreta los disparos de las neuronas cercanas para enviar impulsos al ordenador. No es exactamente telekinesis, pero funciona.

Física atómica: teleportación En octubre se informó que Eugene Polzik y sus colegas del Instituto Niels Bohr de Copenhague habían logrado teleportar la información almacenada en un rayo de luz (el estado cuántico de una serie de átomos de cesio) hacia una nube de átomos, una utilización práctica de un efecto cuántico (que sólo ocurre a niveles atómicos y subatómicos) que, sin ser tampoco una verdadera teleportación, podría tener importantes aplicaciones futuras en la informática, y amplía los anteriores experimentos de teleportación de luz.

La nociencia en 2006


Los medios de comunicación con frecuencia informan de ciertos hechos presentados a guisa de ciencia, que malinterpretan los datos que se tienen o, por contraparte, dejan de informar de asuntos clave. Quizá el más difundido hecho seudocientífico de 2006 son las llamadas "pirámides de Bosnia", que promueve el economista y politólogo Semir Osmanagic, y que ha incluso intentado convencer a la UNESCO de declarar patrimonio de la humanidad las formaciones que él considera que son pirámides hechas por seres humanos, pese a que los geólogos y los hechos indican que se trata simplemente de formaciones naturales sin ningún misterio a desvelar.

Agujeros negros por todas partes

Una entidad contradictoria, el agujero negro, parece ser una característica esencial de la conformación de nuestro universo... aunque aún no se ha demostrado totalmente su existencia.

La frase "agujero negro" se ha convertido en parte del lenguaje cotidiano, indicando algo que se traga todo lo que hay a su alrededor. En esta ocasión, el lenguaje popular es preciso, porque tal sería la definición más sencilla de un agujero negro: un objeto tan masivo y tan concentrado que su fuerza gravitatoria atrae todo lo que se acerca demasiado, incluso la luz.

La idea de un objeto con una gravedad así de intensa no es tan novedosa. Fue el geólogo inglés Jonh Michell quien en 1784 sugirió, usando sólo la teoría clásica de Newton, que un objeto con la misma densidad del sol, pero que midiera 500 veces el radio de nuestra estrella, tendría tal atracción gravitacional que para escapar de ella se necesitaría una velocidad superior a la de la luz, 300.000 kilómetros por segundo, y que por tanto dicho objeto sería invisible. Pero fue la teoría gravitacional de Einstein, la relatividad general, la que estableció que efectivamente podría existir un objeto así. Diversos matemáticos y físicos fueron calculando la masa y radio que debería tener un objeto para llegar a "colapsarse" en forma de agujero negro, pues algunos objetos no tienen masa suficiente para convertirse en agujeros negros, y se colapsan en forma de estrellas de neutrones o enanas blancas.

La idea del "colapso" es esencial para comprender los agujeros negros. Todos los objetos tienen masa, de modo que no sólo ejercen atracción gravitacional sobre lo que hay a su alrededor, sino que su centro también atrae a su propia superficie. Como la gravedad es una fuerza tan débil, valga la paradoja, esta atracción no es relevante salvo en cuerpos muy grandes, ya que la contrarrestan las fuerzas de la propia materia de la que están formados los cuerpos. El centro de la tierra atrae así a sus propias capas superiores, pero éstas no caen por estar bien sostenidas por las que están bajo ellas. Pero un objeto con una gran masa puede llegar a ejercer una atracción gravitacional sobre su superficie que haga que ésta "caiga" hacia el centro (o que el objeto como tal se comprima, que es lo que veríamos). Como la gravedad es una fuerza que depende de la masa y de la distancia, al llegar a un tamaño determinado, el objeto se comprimiría tanto que su gravedad llegaría a atraer la luz, y por tanto nada podría salir de él. Sería un agujero negro.

El problema más serio para los físicos es que dentro de un "agujero negro" (nombre que fue creado por el físico teórico John Wheeler en 1967) ocurren cosas que contradicen todo lo que sabemos de física hasta hoy, porque su gravedad alteraría toda la estructura del espacio-tiempo a su alrededor y en su interior. Así, por ejemplo, las ecuaciones que tenemos actualmente predicen que en el interior de un agujero negro el tiempo se detendría por completo y la curvatura del espaciotiempo se convertiría en infinita, así como su gravedad. Estos conceptos son hoy interpretados por la física como indicación de que nuestro conocimiento del universo sigue siendo incompleto. En 1970, Stephen Hawking y Roger Penrose demostraron que los agujeros negros no sólo eran una posibilidad, sino que eran una característica esencial de la teoría de la relatividad.

Dado que no se puede observar directamente un agujero negro, y que las características que podemos observar indirectamente son indistinguibles de las de otros objetos estelares masivos como las estrellas de neutrones, es imposible decir que hoy se haya demostrado que tales objetos existen fuera de las ecuaciones de los cosmólogos. Sin embargo, las observaciones astronómicas han reunido a una gran cantidad de "candidatos" a agujeros negros, con masas que van desde tres o cuatro veces la del sol hasta decenas de miles de millones de veces, los llamados "agujeros negros supermasivos". De hecho, sabiendo que no hay prueba determinante aún, los astrónomos hablan abiertamente de agujeros negros encontrados en el universo mediante observación indirecta, algunos a unos pocos miles de años luz de la Tierra y otros en los confines del universo.

La observación indirecta de los agujeros negros incluye la búsqueda de una distorsión que la gravedad de un agujero negro provoca en la luz de las estrellas que hay detrás de él, el efecto de "lente gravitacional" que predijo Einstein y cuya observación es prueba de que la relatividad es una descripción adecuada del universo. Igualmente, se pueden ver emisiones de "chorros galácticos" que el propio Stephen Hawking demostró que podían realizar los agujeros negros (con lo cual, paradójicamente de nuevo, sí puede salir materia de estos monstruos estelares). Pero la más asombrosa, y la que ha sido recreada por el cine una y otra vez, la absorción de la masa de otra estrella cercana, creando un remolino por el cual desaparece la segunda. Esta absorción fue observada por primera vez por científicos del Instituto Tecnológico de California, utilizando las capacidades de observación ultravioleta del observatorio orbital Galaxy Evolution Explorer (Galex), menos conocido que el Hubble pero esencial para la exploración de nuestro universo.

Aún no se ha demostrado la existencia de los agujeros negros más allá de toda duda, y ciertamente existen hipótesis alternas según las cuales se pueden formar estrellas supermasivas con gravedad irresistible pero que no incluyen las contradicciones que parecen ofrecernos los agujeros negros de la teoría relativista. Pero hasta hoy, ninguna explicación alterna es tan completa como la que se desarrolla a partir de los descubrimientos de Einstein y, si nos atenemos a lo que descubren continuamente los astrónomos, los agujeros negros no sólo son una posibilidad bastante clara, sino que parecen estar por todas partes, a donde quiera que observemos nuestro universo.

Agujeros negros y Big Bang


El punto donde que la atracción gravitatoria es tal que la luz no puede escapar de él se llama "horizonte de eventos". Pero más allá del horizonte de eventos, sólo hay espaciotiempo distorsionado, hasta que en el centro mismo del agujero se encuentra ese ente que los físicos llaman "singularidad", ya que es donde las cantidades que usamos para medir el campo gravitatorio se vuelven infinitas. Lo que vuelve trascendente y esencial el estudio de las singularidades en los agujeros negros es que la teoría del Big Bang parte de considerar que todo nuestro universo surgió al estallar una singularidad, un punto en el tiempo de tamaño cero y masa infinita, y que al estallar creó la masa, el tiempo y el espacio al mismo tiempo. Quizá dentro de los agujeros negros está así el secreto del origen del universo, de la vida y de todo cuanto existe.

Las distorsiones de la percepción

La imagen parece moverse ondulando cuando, en realidad, no tiene ningún movimiento.
(Imagen de Dominio Público creada por Paul Nasca, vía Wikimedia Commons)
La percepción no es tan confiable como quisiéramos, y quizá sea bueno desconfiar un poco de lo que percibimos, sobre todo cuando tiene características demasiado singulares.

Todos conocemos las ilusiones ópticas: cubos que parecen invertirse por sí mismos, líneas rectas que parecen curvadas, colores que se ven más oscuros o más claros según su entorno, etc.

El estudio de la percepción ha sido parte al mismo tiempo de la ciencia y de la filosofía, en especial cuando ésta se pregunta sobre la precisión y confiabilidad con la que apreciamos el universo. El resultado ha sido bastante desalentador para el ser humano: las capacidades de nuestros sentidos son bastante mediocres comparadas con los grandes campeones perceptivos de la naturaleza. El ojo de un buitre es mucho más agudo que el humano, con un millón de receptores de luz por milímetro cuadrado, y puede ver a un pequeño roedor desde una altura de 5 mil metros. Las abejas ven la luz ultravioleta. Los delfines pueden escuchar frecuencias de hasta 100.000 hertzios (Hz) mientras que nosotros apenas escuchamos de 20 a 20.000 (y menos al ir envejeciendo). En toda la naturaleza hay sistemas de percepción evolucionados para enfrentar desafíos concretos, superan con mucho la percepción humana o están diseñados para estímulos que no significan nada para nosotros.

Además de las limitaciones físicas de nuestros sentidos, lo que percibimos está filtrado a través de nuestras emociones y expectativas. Así, en un conocido experimento se le da a un grupo de voluntarios la misión de contar cuántas veces bota la pelota en la filmación de un partido de baloncesto, durante la cual pasa varias veces entre los jugadores un personaje con traje de gorila. Los resultados han demostrado que, concentrados en los botes del balón, la mayoría de los sujetos no notan la aparición del gorila, aunque lo aparentemente lógico sería que tan desusado acontecimiento llamaría su atención. Un caso extremo donde las emociones alteran nuestra percepción lo tenemos en las personas que sufren de trastornos alimenticios, y que se ven a sí mismos como obesos cuando están en un alarmante estado de desnutrición. Otra fuente de distorsiones son diversos medicamentos, sustancias (como los alucinógenos o psicodislépticos), ciertas enfermedades, tanto físicas como mentales, la experiencia previa y numerosos factores adicionales. Un ejemplo especialmente interesante son las personas que sufren determinadas afecciones como la agnosia visual, que puede ser causada por muy diversas causas. Se trata de una incapacidad del cerebro de interpretar o entender estímulos visuales normales, por ejemplo, no poder reconocer caras aunque el paciente pueda describir su forma, color y características.

Quizá el ejemplo más asombroso de las alteraciones de la percepción sea la sinestesia, una afección definida como la mezcla de impresiones de sentidos diferentes. Drogas como el LSD o la mescalina pueden provocar sinestesia, de modo que la persona bajo su influencia reporta que puede "ver los colores" u "oler los sonidos". La sinestesia no es tan infrecuente, pues la posee en mayor o menor medida el 10% de la humanidad, generalmente en formas leves, como el hecho de asociar colores a letras, números o días de la semana, pero resulta especialmente valiosa para el estudio de la neurología (y sumamente interesante para un lego) cuando alcanza niveles extremo, como el de un hombre que experimenta distintos sabores según la textura de lo que está tocando (al hacer albóndigas para hamburguesas, experimenta un sabor amargo) o una mujer, muy estudiada, que ve colores según la nota que se toque en el piano.

Todos nuestros sentidos son producto de las mismas células, las neuronas, evolucionadas para activarse ante distintos estímulos: las del oído se activan con los movimientos en los que nuestro oído interno convierte al sonido, mientras que las de la retina se activan con la luz. Pero además de esta especialización, el cerebro interpreta los impulsos provenientes de tales células solamente como sonidos o luz. Cuando activamos las células de un sentido con otro tipo de estímulo, el cerebro y el órgano lo interpretan siempre igual. Una forma sencilla de constatar esto es tallarnos los ojos vigorosamente, como lo hacemos cuando tenemos sueño. La presión que provocamos en el ojo es interpretada por la retina en forma de luz, como estrellitas y destellos diversos, un pequeño espectáculo de fuegos artificiales dentro de nuestros ojos provocado por la presión que activa las células de la retina, pero que éstas sólo pueden transmitir como luz.

Los estudios sobre la percepción y sus distorsiones no tienen sólo una utilidad médica. De manera cada vez más clara, las fuerzas policiales están comprendiendo que deben ser más cautas con lo que dicen los testigos, no por temor a que mientan, sino porque sus percepciones no son del todo confiables, especialmente si han estado bajo una gran tensión. En un experimento clásico, un grupo de personas inesperadamente es testigo de un asalto por parte de un delincuente alto, forzudo y malencarado, que amenaza a una víctima indefensa y le roba la cartera. La gran mayoría de los testigos informa después que el delincuente portaba una pistola, cuando en realidad llevaba solamente un plátano, con su característico color amarillo.

Nuestros sentidos son útiles, pues, pero no infalibles. Confiar ciegamente en ellos y en los datos limitados y con frecuencia distorsionados que nos ofrecen puede no ser una buena idea, como no lo sería, a menos que tengamos alguna afección claramente diagnosticada, dudar totalmente de toda la información que nos dan acerca del universo que nos rodea.

Seamos sinestésicos

El doctor Vilayanur S. Ramachandran, uno de los principales estudiosos de la sinestesia, empezó diseñando experimentos destinados a determinar si se trataba de un efecto de percepción real o de la "imaginación" de los sujetos, y una vez habiendo demostrado que era real, ha emprendido un esfuerzo profundo por estudiar la neurofisiología de la sinestesia, determinando, entre otras cosas, que es producto de un "cruce neural", donde ciertos desequilibrios químicos producen que los impulsos destinados a un sentido como la vista se desvíen de modo medible hacia otros sentidos, demostrándolo en experimentos de imágenes del cerebro con distintos escáneres. La hipótesis más interesante que ha emitido Ramachandran, que sigue trabajando en el tema, es que la sinestesia no sólo es normal, sino que puede estar en la base de muchos procesos creativos, como la creación de metáforas en la literatura o, incluso, ser parte clave de la capacidad de leer, con la que enseñaríamos a nuestro cerebro a interpretar las palabras que leemos como sonidos.

El recuento del tiempo

Los distintos calendarios usados por nuestra especie han sido una mezcla del conocimiento del universo y los deseos o creencias, de deseos y de la necesidad de saber para sobrevivir.

Saber en qué momento del año estamos no es nada trivial. ¿Se acerca el frío y hay que reunir leña? ¿Es el momento de prepararse para la caza pues viene la migración de los animales que son la base de la alimentación del grupo? ¿Se aproxima el fin de la temporada de pesca? ¿Debemos preparar ya los campos para sembrar? Sin conocer los ciclos de nuestro planeta, esas y otras actividades nunca hubieran podido ser realizadas con eficacia.

El ciclo del día y la noche es lo bastante breve como para percibirlo sin problemas, pero un ciclo largo como el año requiere de un registro preciso del paso de los días, una observación atenta y una memoria transmitida mediante el lenguaje para poder ser comprendido. Fenómenos como los solsticios, los días más corto y más largo del año, o los equinoccios, cuando el día y la noche tienen igual duración, dividen el año en cuatro partes identificables, las estaciones. Los cambios en la temperatura media, las precipitaciones de lluvia y otros elementos durante esas estaciones rigen la vida en la Tierra y, por tanto, las humanas. No es extraño por ello que el pensamiento mágico atribuyera a los solsticios y los equinoccios propiedades preternaturales, tanto que aún hoy muchas celebraciones se dan en esos cuatro momentos, incluida la Navidad, en el solsticio de invierno, como San Juan marca el solsticio de verano.

Además del ciclo solar, el hombre observó los ciclos lunares y emprendió un largo esfuerzo por conciliarlos. ¿Cuántas lunas llenas forman un año? Se creyó durante largo tiempo que ambos ciclos eran reconciliables matemáticamente, y como los ciclos lunares eran más fácilmente observables, no es extraño que los primeros calendarios fueran, precisamente, lunares. Así, los babilonios intentaron identificar ciclos de 8, 27 y 19 años como aquéllos en los que coincidían los años solares y las fases lunares (la mejor aproximación es la de 19 años, con 235 meses lunares). Pero así como el año no dura un número exacto de días o meses lunares, sino una media de 365,24219 días, un mes lunar o sinódico tiene una duración media de 29,53059 días, dificultando la reconciliación del año solar y lunar.

El primer gran esfuerzo calendárico humano conocido se realizó en Babilonia, cultura que por alguna causa aún no claramente determinada decidió usar una base "60" para sus cálculos del tiempo. Nuestra cultura, que utiliza la base 10, sigue sin embargo la tradición babilónica en numerosas mediciones con base 60, como los minutos de una hora, los segundos de un minuto, las subdivisiones en grados de un círculo o, incluso, los 12 meses del año. Por su parte, fueron los judíos los que crearon la semana de siete días, la duración de cada una de las cuatro fases lunares, probablemente con base en el mito del génesis bíblico.

Como cada ciclo (día, mes lunar, año solar) es independiente de los otros, cosa que el ser humano tardó en aceptar debido a la creencia en un orden perfecto basado en los designios de unos u otros dioses, los intentos por conciliarlos llevaron a errores en los distintos calendarios utilizados a lo largo de la historia, errores que se hacían evidentes únicamente al paso de muchos años, cuando se observaba que se desfasaban respecto de la realidad y había que realizar algunos ajustes y revisar las matemáticas. El ejemplo clásico es el del calendario romano, que para tiempos de Julio César estaba ya desfasado en dos meses respecto del año solar verdadero. En Egipto, además de conocer a Cleopatra, César conoció al astrónomo Sosígenes, quien le explicó los ajustes calendáricos que los egipcios habían hecho a lo largo de 3 mil años y que les daban un año medido según las estrellas que era sumamente preciso (además del calendario lunar religioso y un calendario "civil" de 365 días). El ajuste realizado a instancias de Julio César, y que incluía un año bisiesto cada cuatro, fue útil hasta la edad media, cuando los desfases se hicieron nuevamente evidentes y exigieron un nuevo ajuste, el promovido por el papa Gregorio XIII y llevado a cabo por un equipo de científicos dirigidos por el matemático alemán Cristoph Clavius a medidados del siglo XVI para desarrollar el calendario gregoriano que se emplea actualmente en casi todo el mundo. Algo similar había ocurrido ya en 1079 con el calendario Persa, cuando el sultán Jalal Al Din Shah puso en vigor el ajuste calendárico encargado a un grupo de sabios entre los que se contaba el poeta, matemático, astrónomo y bon vivant Omar Al Khayyam, cuyo cálculo del año solar es incluso más preciso que el del propio calendario gregoriano.

Actualmente, las observaciones astronómicas precisas que permite el instrumental tecnológico y los conocimientos científicos resultado de miles de años de observaciones y estudios nos permiten conocer con enorme exactitud la duración del día, del año solar y del mes lunar, así como numerosos otros ciclos del universo. Y, sin embargo, hay tradiciones que se rehúsan a desaparecer. Así, por ejemplo, la Semana Santa, que corresponde a la Pascua judía, se calculó primero según el antiguo calendario lunisolar hebreo, pero desde el siglo IV se calcula de modo independiente, utilizando métodos enormemente complejos que parten de que el año tiene exactamente 365 días y que utilizan las fases de la luna y los días de diferencia entre el año solar y el lunar.

Los antiguos no eran ignorantes


El conocimiento de las civilizaciones antiguas no es "increíble" si conocemos la historia y la importancia que para ellas tenían sus observaciones astronómicas. Construcciones como Stonehenge, las pirámides de Giza o los observatorios mayas no eran sólo ejercicios intelectuales o desarrollos religiosos, sino respuestas inteligentes y razonadas al desafío que implicaba saber el momento en el que se estaba viviendo. Por ello, siendo conocimientos admirables, difícilmente se puede decir que estuvieran "fuera del alcance" de las civilizaciones que dependían de las estaciones, las heladas o, como en el caso del antiguo Egipto, de la inundación anual del Nilo, y que estudiaban el universo para sobrevivir. Así, el calendario estelar egipcio que funcionó durante dos mil años antes del fin de ese imperio y que consiguió predecir con gran precisión dicha inundación, estaba formado por las interrelaciones de un sistema de 36 estrellas, la principal de las cuales era Sirio, que marcaban la duración del año con notable exactitud. Como le dijo Sosígenes a Julio César al explicarle la sabiduría astronómica egipcia, la Luna es un buen dios, pero no sabe cuándo ocurren las cosas.

Pasado y futuro del cáncer

No es incurable, no es una sentencia de muerte y no es ni siquiera una sola enfermedad, pero "cáncer" sigue siendo fuente de poderosas emociones y en general un desconocido.

Conocido al menos desde tiempos de Hipócrates, el cáncer ha sido sin embargo entendido y estudiado apenas desde el siglo XIX, cuando el descubrimiento de las células y las teorías científicas de la enfermedad sustituyeron al empirismo vago de la medicina precientífica y a teorías como la de los "humores", que afirmaba que las enfermedades eran producto de desequilibrios entre los cuatro humores que se creía que conformaban el cuerpo humano (bilis negra, bilis amarilla, flema y sangre), y que prevaleció durante milenios sin aportar nada a la curación de los enfermos con sus procedimientos de sangrías, laxantes y dietas en ocasiones peligrosísimas. Igualmente, abundaron las creencias erróneas sobre el origen, desarrollo y características del cáncer. Para algún profesor holandés del siglo XVII, por ejemplo, el cáncer era causado por un fluido linfático demasiado ácido, mientras que otro concluía que era un veneno y que, además, era contagioso.

Pero el siglo XIX vio cómo los científicos alemanes Theodor Schwann y Matthias Jakob Schleiden descubrían que el cuerpo humano no era una mezcla de cuatro humores, sino el asombroso agregado de millones y millones de células especializadas. Esta teoría habría de cambiar todo el conocimiento de la biología y, por supuesto, de la medicina, sentando las bases de la patología que conocemos actualmente, sustentadas adicionalmente por el trabajo de Louis Pasteur. Pronto se descubrió que el cáncer era precisamente un desarreglo de la multiplicación de las células del cuerpo, que al sufrir daños en su ADN se dividían descontroladamente debido a mutaciones en los genes que se encargan de la división celular. Se entendió igualmente cómo las células cancerosas podían invadir otros tejidos cercanos o incluso lejanos (mediante la metástasis o migración de las células cancerosas por medio del sistema circulatorio o del linfático).

Distintas formas de cáncer que afectan a distintas células se comportan de maneras igualmente diferentes, y son susceptibles de diversas formas de tratamiento. Es decir, a diferencia de una enfermedad claramente delimitada como podría ser la hepatitis o la ateroesclerosis, el cáncer es en realidad una clase de enfermedades que tienen relación entre sí pero no son iguales ni en su origen, ni en sus riesgos ni en su tratamiento.

En general, el cáncer es producto de la exposición de las células a agentes capaces de provocar mutaciones (mutágenos), excepto en el caso de algunas formas de cáncer que son producto de fallas genéticas hereditarias. Los agentes que provocan mutaciones causantes del cáncer son llamados cancerígenos, y pueden ser muy diversos: sustancias que emiten radiaciones (principalmente beta o gamma, radiación solar ultravioleta y rayos X), diversas sustancias y compuestos, el tabaco, el alcohol, ciertos microbios como el hongo Aspergillus flavus (por producir la la aflatoxina B), y virus que inyectan directamente su ADN en las células que atacan. Pero la presencia de un carcinógeno no es necesariamente suficiente para causar cáncer, sino que es necesario además que haya cierta predisposición del individuo, ya sea por el medio ambiente, su propia composición genética y la presencia de otras sustancias.

Precisamente por su diversidad, es muy difícil, y poco aceptable, hacer generalizaciones sobre el tratamiento del cáncer y su posible mortalidad. El tratamiento eficaz del cáncer depende, primeramente, de una detección temprana de la enfermedad, del tipo de cáncer de que se trate y dónde esté situado, además del estado general de salud y edad del paciente. Las opciones al alcance del médico van desde la extirpación quirúrgica del tumor, la quimioterapia, la radioterapia, la inmunoterapia, la terapria de anticuerpos monoclonales, la supresión hormonal y otras menos conocidas, y generalmente se utiliza una combinación de más de una terapia para conseguir la curación o el control del avance de la enfermedad. A ello deben agregarse opciones preventivas como la vacuna contra los tipos 16 y 18 de cáncer causado por el papilomavirus humano (PVH).

Pero por todo lo dicho, no hay, ni puede haber una cura contra el cáncer, sino que hay y habrá diversas curaciones posibles según el tipo de cáncer y el tipo de paciente. Pero aún sin que se haya hecho realidad esa mítica cura, la mortandad por cáncer ha bajado notablemente respecto del pasado, y las opciones siguen desarrollándose y aumentando la calidad y cantidad de vida de quienes sufren algún tipo de cáncer. De hecho, no pasa ni un día en el que no se haga algún anuncio sobre nuevos descubrimientos en numerosísimas áreas relacionadas con la lucha contra el cáncer: prevención, mejores medicamentos para reducir los efectos colaterales de otras aproximaciones como la quimioterapia, procedimientos quirúrgicos novedosos o perfeccionados, descubrimientos sobre genética y división celular, pruebas más eficaces para detectar el cáncer, recomendaciones sobre cambios en la dieta y la forma de vida para evitar la exposición a carcinógenos, vacunas y, sobre todo, nuevas terapias.

Hoy en día, la terapia más prometedora es la terapia concentrada. Disponible desde fines de la década de 1990 y en estudio constante, utiliza agentes específicos para las proteínas desreguladas de las células del cáncer. Utilizando pequeñas moléculas y anticuerpos monoclonales, así como estructuras químicas específicas que pueden buscar las células cancerosas o el tejido no celular que rodea a los tumores llevando a ellos sustancias radiactivas en cantidades muy inferiores a las de la radioterapia común y matando a las células malignas con mínimos daños a los tejidos sanos adyacentes.

No causa cáncer, aunque lo diga el vecino


El temor que sigue latente respecto de esta clase de enfermedades permite que periódicamente aparezcan afirmaciones sensacionalistas que afirman que ciertos elementos o fenómenos causan cáncer pese a que haya numerosos estudios que lo niegan. Es el caso de la telefonía móvil, que ha provocado escenas de histeria colectiva basadas en afirmaciones vagas, reportes imprecisos en los medios de comunicación, conclusiones apresuradas y llamamientos de personas poco informadas. Apenas el 6 de diciembre se publicó un nuevo estudio realizado en Estados Unidos sobre más de 400.000 personas que se suscribieron al uso de teléfonos móviles entre 1982 y 1995, y a los que siguió hasta 2002, concluyendo que el uso de móviles no tiene ninguna vinculación con el riesgo de cáncer, ni siquiera el del cerebro o la leucemia, frecuentemente citados por quienes animan la histeria.

Ulises en el Sol

El sol domina nuestro planeta y es responsable de la vida en él, y sin embargo aún estamos conociendo nuestr estrella, en parte gracias a largas misiones espaciales.

Fue Anaxágoras quien propuso en el siglo V antes de nuestra era la idea de que el sol era una bola gigante de metal muy lejana y más grande que el Peloponeso, y no precisamente la carroza de Helios, lo cual le ganó la prisión por hereje, premio destinado a más de un pensador científico enfrentados a las creencias irracionales e incontrastables. Se dice además que doscientos años después, Eratóstenes, quien midió con notable precisión la circunferencia terrestre, calculó que el sol estaba a una distancia de unos 149 millones de kilómetros de la Tierra, cifra muy cercana a lo que conocemos actualmente.

Pero fue Galileo Galilei el primero que, con espíritu estrictamente científico, se dedicó a una observación sistemática del sol. Su labor astronómica le costó la vista casi totalmente, pero dejó constancia de que el sol no era, como se creía, una esfera perfecta, sino un globo con manchas que Galileo consiguió elegantemente demostrar que no eran satélites o lunas, sino características de la superficie.

El sol es un reactor nuclear de fusión formado en un 74% por hidrógeno, un 25% por helio y rastros de diversos elementos más pesados. En su interior, los átomos de hidrógeno se fusionan formando helio y liberando luz y calor. El sol tiene bastante hidrógeno como para seguir funcionando durante unos 5 mil millones de años, cuando comenzaría, dicen los cosmólogos, la fusión del helio y el sol pasará a ser una estrella gigante roja. En su interior no hay ningún elemento sólido, sino que toda materia está en forma de gas y de plasma, el cuarto estado de la materia. Pero todo lo que la ciencia ha descubierto sobre el sol hasta hoy es poco comparado con lo mucho que aún ignoramos, además de los misterios nuevos que nuestro conocimiento nos ha enseñado que existen, como la aparente paradoja de que la superficie del sol tiene una temperatura de 6.000 grados Kelvin, mientras que su atmósfera o corona solar alcanza un millón de grados de temperatura, o los problemas que presenta su campo magnético.

Los cambios que sufre el sol no son en general perceptibles directamente en la Tierra, pero además del interés científico sobre nuestra estrella, que nos permite saber más sobre el universo, estos cambios han adquirido relevancia debido a que son capaces de afectar algo tan esencial como las telecomunicaciones. En su ciclo de actividad de 11 años, el sol tiene momentos de grandes "tormentas" solares y llamaradas que pueden alterar gravemente las comunicaciones inalámbricas, y lo han hecho en el pasado. Además, el campo magnético solar se invierte cada 11 años, dando como resultado un segundo ciclo de 22 años.

En 1990 el transbordador espacial Discovery lanzó la nave espacial robótica Ulises con objeto de conocer los polos norte y sur del sol, en especial su atmósfera y el llamado "viento solar", un flujo de partículas cargadas, principalmente electrones y protones, que expulsan las estrellas y que son responsables, entre otras cosas, de las tormentas magnéticas que afectan nuestras telecomunicaciones, y de las auroras boreales y australes. Las sondas enviadas anteriormente habían estudiado principalmente el ecuador solar, pero los polos de nuestro astro se habían mantenido fuera de nuestro alcance. Para poder estudiar los polos, la nave Ulises, dotada con instrumentos científicos aportados tanto por la NASA como por la Agencia Espacial Europea, fue lanzada hacia Júpiter, con objeto de utilizar la atracción gravitacional de ese gigante gaseoso para salir de la eclíptica (el plano más o menos coincidente con el ecuador solar en el que orbitan los planetas) y lanzarse hacia las más altas latitudes. Así, Ulises pudo observar al sol en la porción más tranquila (o de mínimas manchas solares) del ciclo de 11 años entre 1994 y 1995, y en la porción de mayor actividad de manchas solares entre 2000 y 2001. En noviembre de este año, la nave Ulises nuevamente pasó bajo el polo sur del sol, precisamente en los momentos en que se invirtió nuevamente el campo magnético solar, aportando numerosos datos sobre los efectos de este cambio en el viento solar, los rayos cósmicos galácticos y otros elementos del espacio. La observación iniciada en ese momento continuará sin cesar durante más de un año, con la pequeña nave de 370 kg haciendo una órbita alrededor del sol, de sur a norte, llegando al polo norte solar en noviembre de 2007 y terminando su observación en marzo de 2008.

Hasta hoy, Ulises nos ha enseñado mucho sobre el comportamiento del viento solar, la fuerza del campo magnético solar, las diferencias entre el viento rápido y lento y la difusión de los rayos cósmico sen la atmósfera solar. Además, la curiosa órbita perpendicular a la eclíptica de Ulises permite que esta nave haya recorrido áreas del espacio interplanetario en las que nunca había habido un aparato humano. Este hecho fue aprovechado por los diseñadores europeos y estadounidenses par realizar una serie de observaciones adicionales. Así, el paso de Ulises por Júpiter para salir de la eclíptica en 1991 y su segundo paso por el planeta en 2003-2004 fueron aprovechados para utilizar los instrumentos de la nave con objeto de estudiar el campo magnético de ese enorme planeta y su relación con el viento solar, obteniendo abundantes datos, además de conocer mejor la composición del planeta y confirmar algunas predicciones realizadas matemáticamente sobre el plasma cerca de Júpiter y de su luna Io.

Conducción y uso de una nave interestelar


Durante 16 años, de modo casi silencioso, de científicos y técnicos en Europa y Estados Unidos se han ocupado de seguir y guiar a la Ulises, de resolver los problemas inesperados de la misión y de recibir, procesar, decodificar e interpretar la enorme cantidad de datos que la misión ofrece de manera prácticamente continua. Sólo el sitio de la Agencia Espacial Europea (ESA) dedicado a la Ulises muestra una lista de más de 150 científicos implicados en el proyecto, además de los técnicos que dirigen la nave cotidianamente y cuyo trabajo ha permitido que la misión se prolongue mucho más allá del primer tránsito por el sol en 1995, que estaba marcado como el objetivo después del cual la misión terminaría. Su trabajo exige controlar una nave a gran distancia para que, por ejemplo, sus retrocohetes estabilicen y corrijan su trayectoria. Cuando la nave está en las cercanías de Júpiter, tales órdenes tardan en llegar unos 43 minutos y medio, de modo que los cálculos deben hacerse con asombrosa precisión para que durante más de 16 años una nave haya estado exactamente en el lugar del sistema solar que necesitaban los científicos, lo cual no es poca hazaña.

Aceleradores de partículas

En un túnel cerca de Ginebra, los científicos se preparan para enfrentar algunos de los más asombrosos misterios del universo.

Algunos de los aparatos más complejos, grandes y potentes que ha producido el hombre, los aceleradores de partículas, pueden llevarnos a resolver grandes misterios reales, como el de la materia que, según las matemáticas, existe pero no podemos ver (llamada por ello "materia oscura") y que formaría la inmensa mayoría de la masa del universo, o por qué la gravedad es tan débil comparada con las otras fuerzas de la naturaleza que conocemos: el electromagnetismo, la fuerza nuclear fuerte y la fuerza nuclear débil, o cómo complementar el Modelo Estándar que hoy es la teoría fundamental de la física.

En 1993, una decisión del Congreso de los Estados Unidos suspendió la construcción del Supercolisionador Superconductor, un acelerador de partículas formado por un anillo con una circunferencia de 87 kilómetros, a lo largo de los cuales unos imanes superconductores acelerarían un flujo de protones. Con 2 mil millones de dólares ya gastados del presupuesto original de 4.400 millones (y que se había duplicado desde los inicios del proyecto) y una tercera parte del túnel que lo albergaría ya excavada, los legisladores estadounidenses optaron por su cancelación incluso ante las protestas del entonces presidente Bill Clinton. A ojos de muchos, esto se debió, al menos en cierta medida, al hecho de que no todos esos legisladores entendían claramente qué es un acelerador de partículas y para qué sirve.

La investigación en el mundo de las partículas elementales de la materia es mucho más compleja de lo que alguna vez se creyó. En lugar de un simple mundo formado por electrones, protones y neutrones, los físicos han ido descubriendo una variedad de partículas distintas, más de 20, divididas en grupos de bosones, leptones, mesones y hadrones, además de que la exploración matemática propone la existencia de diversas partículas cuya existencia aún no se ha podido corroborar experimentalmente, como el bosón de Higgs. Los neutrones y protones resultaron no ser elementales, sino estar formados por otras partículas llamadas "quarks". Existen además partículas tan peculiares como los neutrinos, cuya masa es tan pequeña que hicieron falta mediciones de gran precisión durante mucho tiempo hasta que pudieron detectarse finalmente este mismo año.

Para explorar este mundo, Ernest Rutherford descubrió que el bombardeo de materiales o partículas con otras partículas (bombardeo atómico) nos permitía conocer experimentalmente el interior de los átomos y las partículas. Para perfeccionar y controlar el bombardeo atómico nacieron los aceleradores, que utilizan una fuente emisora de partículas o iones que aceleran por medio de electroimanes cuya polaridad se alterna a gran velocidad. Esta aceleración puede usarse para producir rayos X, para ciertas formas de terapia con radiación contra el cáncer o bien para hacer chocar las partículas o iones contra determinados materiales o entre sí. Para obtener resultados, los físicos requieren de aceleradores cada vez más precisos y potentes. El supercolisionador cancelado por Estados Unidos hace 13 años pretendía ser el más potente del mundo, generando 40 TeV (teraelectronvoltios, es decir, 40 billones de electronvoltios, medida utilizada para designar la energía cinética o de movimiento que gana un electrón al pasar por un campo magnético de un voltio).

Este año se han llevado a cabo las primeras pruebas del acelerador de partículas europeo, perteneciente al CERN (siglas en francés de la Organización Europea para la Investigación Nuclear), llamado Gran Colisionador de Hadrones, o LHC por sus siglas en inglés (los hadrones son un tipo partículas entre las que se incluyen los protones y los neutrones). Se espera que inicie operaciones a un nivel de energía reducido en 2007 para alcanzar en 2008 una capacidad de 7 TeV, que lo convertirán en el acelerador más grande y de más energía del mundo.

Los experimentos previstos en el LHC podrían ayudarnos a resolver algunos de los grandes misterios reales que mencionamos al principio. Los haces de protones acelerados por el LHC se utilizarán en 6 experimentos principales especializados en distintas actividades diseñadas para explorar distintos aspectos de las colisiones de partículas. Alice: utilizará las colisiones de iones de plomo para intentar generar una nueva fase de la materia, el plasma de quarks-gluones (las fases que conocemos son: gaseosa, líquida, sólida y condensado de Boise-Einstein). Atlas: Utilizará las colisiones de protones contra protones para explorar la naturaleza básica del universo y las fuerzas que dan forma, para lo cual cuenta con 1800 físicos de 150 universidades y laboratorios procedentes de 35 países. CMS: entre otras cosas intentará producir el hoy hipotético bosón de Higgins y encontrar pruebas de la "supersimetría", un modelo físico que permitiría, de ser cierto, resolver muchas de las aparentes contradicciones de la física cuántica. LHCb: Explorará por qué hay una violación de la simetría CP, es decir, por qué el universo está hecho principalmente de materia y no de cantidades iguales de materia y antimateria, asunto de esencial importancia para reconstruir el Big Bang, el proceso de nacimiento del universo, en el cual se creó toda la materia. Totem: Medirá la forma en que los protones se difractan y dispersan en sus colisiones. LHC Forward: Aprovechará que los protones en el acelerador se mueven a velocidades similares a las de los rayos cósmicos para simular la forma en que éstos se comportan al entrar a la atmósfera terrestre.

Si bien algunos de los conceptos de la física de partículas resultan prácticamente incomprensibles para los no especialistas, el LHC nos permite participar de la investigación europea por medio de LHC@Home (LHC en el hogar) un proyecto vía Internet que utiliza tiempo de ordenador donado por personas que descargan y ejecutan un programa especial para hacer simulaciones de cómo viajarán las partículas por el acelerador y ayudar así colectivamente a la calibración de los miles de imanes que deben actuar conjuntamente para el buen funcionamiento del LHC.

El LHC en números


Físicos participantes: 2.000, procedentes de 34 países. Ubicación: 46º 14' 00" N, 6º 03' 00" E, cerca de Ginebra en la frontera franco suiza y ocupando espacio en ambos países. Datos del túnel: 27 kilómetros de longitud y 3 metros de diámetro, a una profundidad de entre 50 y 150 metros. Electroimanes superconductores que usará: alrededor de 9.300. Presupuesto original: 2.600 millones de francos suizos (1.600 millones de euros) más 210 millones de francos suizos (132 millones de euros) para el costo de los experimentos. Costo final real calculado: 6 mil millones de euros.

Los alimentos transgénicos

La idea de la modificación transgénica de los organismos ha adquirido una connotación negativa alejada de lo que realmente puede significar para nuestra especie, sus ventajas y riesgos.

Arroz común y arroz dorado, adicionado con genes
vegetales para producir betacaroteno, un precursor
de la vitamina A.
(foto CC de International Rice Research Institute,
vía Wikimedia Commons
Todos los organismos están genéticamente modificados. De hecho, nosotros mismos somos organismos genéticamente modificados, ya que la evolución implica la constante modificación genética de las poblaciones para adaptarse al terreno, al clima, al resto del ecosistema e incluso a su sociedad.

En algunos casos, como los animales y plantas domésticos, los seres humanos los hemos modificado lentamente para que se ajusten a nuestras necesidades y deseos: trigo más grande, vacas que den más leche, ovejas más lanudas, perros más pequeños o "bonitos", etc. Nuestra influencia sobre el medio ambiente va más allá de los problemas ecológicos más evidentes, como la desaparición de algunas especies, ya que en el proceso hemos alterado más allá de todo posible reconocimiento otras muchas especies.

El conocimiento de la genética nos ha permitido realizar más aceleradamente este proceso y, sobre todo, conseguir, mediante la "ingeniería genética", la incorporación en un organismo de genes procedentes de otro organismo distinto. Esta incorporación de genes ajenos o exógenos se llama "transferencia horizontal de genes", y ocurre en la naturaleza de modo relativamente infrecuente, no sujeto a control humano y, hasta donde sabemos, sobre todo entre organismos unicelulares. La transferencia horizontal de genes artificial es lo que se conoce como modificación transgénica de un organismo. Así, por ejemplo, se puede tomar un gen humano dedicado a producir insulina e incluirlo, mediante diversos métodos de laboratorio, en el código genético de un organismo unicelular, que ya no sólo producirá las proteínas necesarias para su vida normal, sino que usará parte de su energía en la producción de insulina que puede ser utilizada para el alivio de la diabetes.

Por supuesto, esta posibilidad es tan claramente positiva que difícilmente se le podría criticar. Sin embargo, el procedimiento tiene capacidades que igualmente pueden ser utilizadas de modo cuestionable e, incluso, peligroso.

Por ejemplo, un cultivo genéticamente modificado para resistir mejor las plagas, el maíz "Starlink", contiene una forma de la proteína Bt que se digiere más lentamente que las del maíz que normalmente consumimos, y por tanto podría causar que un pequeño número de personas desarrollara una reacción alérgica. Ya sea debido a la polinización cruzada con cultivos no modificados o por otras causas, hubo maíz con esta proteína Bt modificada que llegó al consumo humano, produciendo una reacción social de alarma quizá desproporcionada, pero no injustificada, que llevó a su retirada del mercado a principios de este siglo.

El riesgo del cruzamiento con organismos no modificados es una legítima preocupación, como lo es el uso de las posibles semillas llamadas "terminator", que producirían semillas estériles, lo que obligaría a los agricultores a adquirir semillas patentadas en cada ciclo agrícola. Evidentemente, en este caso el problema no es genético, sino de prácticas comerciales y de negocios. Pero esta posible aplicación de la tecnología de productos estériles (misma que aún no está disponible comercialmente) tiene su contraparte en el hecho de que ese procedimiento también podría aplicarse para impedir, precisamente, los cruzamientos indeseados con organismos no modificados.

En el debate sobre los organismos transgénicos, la propaganda por parte de los promotores (muchas veces con intereses comerciales) y los opositores (muchas veces con más convicciones que información científica) se está resolviendo en un enfrentamiento de propaganda en el que se busca convencer a la opinión pública para conseguir apoyos sociales y políticos antes que informar para ayudar a la formación de un criterio razonado, con bases sólidas y que considere todas las opciones.

El desarrollo de alimentos adicionados con nutrientes necesarios, organismos que puedan producir de manera económica medicamentos que resultan costosos hoy en día, cultivos resistentes a plagas o que se desarrollen mejor en zonas proclives a las sequías o que se conserven mejor en condiciones ambientales adversas, bacterias con genes capaces de identificar y atacar enfermedades, o la posible curación de afecciones genéticas son posiblidades reales que deben tenerse en cuenta en el debate, tanto como el riesgo que pueden representar los organismos modificados.

Pero la mayor parte del debate parece estarse centrando en los anaqueles de frutas y verduras, con un sector social luchando por impedir que lleguen a ellos alimentos genéticamente modificados por el solo hecho de serlo. El principal riesgo que señalan es que en el proceso de modificación genética para obtener una característica deseada se pueden introducir inadvertidamente otras modificaciones indeseables y nocivas para la salud humana, y esta preocupación merece indudablemente ser atendida mediante regulaciones que exijan pruebas a fondo de los cultivos transgénicos para consumo humano.

Sin embargo, no debe perderse de vista que, desde que se introdujo el primer cultivo transgénico comercial en 1994 (un tomate con resistencia aumentada a la putrefacción), no se ha registrado ni un caso en el que los alimentos transgénicos resultaran claramente nocivos para los consumidores, que existen requisitos muy estrictos para la autorización de cada nuevo cultivo y que en estos años se han realizado cientos de estudios sobre dichos cultivos y su consumo, según los cuales no hay diferencias peligrosas respecto de sus parientes no modificados.

Como ocurre con cualquier conocimiento nuevo, es su aplicación la que debe preocuparnos, su reglamentación y su uso tecnológico, y que el control de los mismos esté en manos principalmente de la sociedad, ya que es imposible volver en el tiempo y olvidar un conocimiento ya adquirido.

El arroz dorado


Un ejemplo de los riesgos del debate mal llevado es el del "arroz dorado", un arroz transgénico creado por Peter Beyer e Ingo Portrykus con dos genes añadidos que le dan un contenido aumentado de provitamina A en la forma de beta caroteno (que le da su color dorado). El objeto de este arroz es ser distribuido gratuitamente en sociedades asiáticas cuya dieta tiene como base el arroz y en las que entre 250.000 y 500.000 niños quedan ciegos cada año, según datos de la OMS, por deficiencia de vitamina A. Desde 1999, cuando se anunció el proyecto, varias organizaciones no gubernamentales importantes han luchado por impedir que llegue a los agricultores y consumidores porque su línea política es oponerse a todos los organismos genéticamente modificados, independientemente de cualquier otra consideración.

La historia que cuentan las piedras

La geología abarca estudios sobre el origen y evolución de la vida, la formación de las montañas, el movimiento de los continentes, los volcanes y los terremotos... y no sólo en nuestro planeta.

Pocas cosas parecen tan sólidas como el suelo que pisamos. El habla popular consagra la roca como esencia de la dureza y la perdurabilidad, de lo que confiablemente no cambiará. "Sólido como una roca" es un lugar común recurrente.

Pero las rocas, el suelo que pisamos y el planeta todo sí cambian, de modo incesante, a veces con cambios graduales y suaves como la erosión del río que forja un cañón o el lento movimiento de los continentes que pliega la corteza terrestre para crear cordilleras como el Himalaya o los Pirineos, a veces de modo brutal y catastrófico como en las erupciones volcánicas o los choques de asteroides. Y todo ello es el dominio de la geología, que desafortunadamente algunos siguen identificando únicamente con interminables variedades de minerales de nombres largos y aburridos (al menos hasta que se sabe para qué sirve cada uno).

Definida como la ciencia y estudio de la materia sólida de un cuerpo celestial, lo que incluye su composición, estructura, propiedades físicas, historia y procesos que le dan forma, la geología es una disciplina de enorme amplitud que echa mano abundantemente, a su vez, de la física y la química. Así, la geología es esencial para minería, es ciencia auxiliar de la paleontología y la paleoantropología, es fundamental en los programas espaciales, se propone algún día poder predecir las erupciones volcánicas y los terremotos para salvar vidas y bienes, es fundamental para la industria de la construcción y ayuda a explicar el origen del universo, del planeta y de la vida.

No fue sino hasta el siglo XVII cuando se empezaron a sistematizar las observaciones acerca de la estructura y composición de nuestro planeta. Nicolaus Steno (o Niels Stensen), estudioso danés, sentó por entonces las bases de la geología científica, interés que nació cuando identificó como dientes de tiburón fosilizados a ciertas rocas, llamadas por entonces "piedras de lengua", a las que se atribuían orígenes fabulosos. Plinio el Viejo, por ejemplo, había afirmado que caían del cielo o de la Luna. Pero estas piedras, una vez explicadas, llevaron a Steno a enfrentar un verdadero misterio. Estos dientes se encontraban a veces dentro de otras piedras, así como había muchos objetos sólidos que se encontraban igualmente dentro de otros sólidos. Este fenómeno atrajo el interés de Steno no sólo hacia los fósiles, sino hacia distintos tipos de minerales, incrustaciones, cristales, vetas y esas aparentes placas o capas de roca que hoy conocemos como estratos. Para que haya un sólido dentro de otro, razonó, el sólido externo debe haber sido fluido en el pasado y solidificarse después. Sencillo, elegante... y a nadie se le había ocurrido.

Resultado de los estudios de Nicolaus Steno fueron los principios esenciales para entender nuestro planeta, principalmente la idea de que los estratos de la superficie terrestre se crean uno sobre otro, y que ninguno se podía crear debajo de otro ya existente, algo que hoy puede parecer obvio, pero que no lo era en 1669. Sobre esas bases, George Cuvier y Alexandre Brongniart formularon el principio de la sucesión estratigráfica de las capas de la Tierra. Descubrimos así que los estratos que podemos observar son el registro de la historia del planeta, y al conocer su antigüedad por diversos métodos físicos y químicos, conocíamos la de los objetos, como fósiles o restos de meteoritos, que se encuentran incrustados en ellos.

Durante el siglo XIX, la geología debatió intensamente un punto esencial: la edad de nuestro planeta. Los datos que se podían extraer de la Biblia sugerían que la Tierra (y el universo todo) tendrían unos 6 mil años de antigüedad, pero ya en 1779 el Conde de Buffon observó que la evidencia parecía indicar una antigüedad mucho mayor, idea apoyada seis años después por James Hutton. Pero no fue sino hasta el siglo XX cuando se contó con datos suficientes acerca de nuestro planeta para poder calcular su edad, con una certeza razonable, en unos 4.600 millones de años, aproximadamente la tercera parte de la edad del universo. La geología demostró además que los continentes no están fijos en la superficie terrestre, sino que se han movido en una deriva continental a lo largo de miles de millones de años. Esta sorprendente idea propuesta por Alfred Wegener en 1912 no fue demostrada de manera definitiva sino hasta la década de 1960, y dio pie a la tectónica de placas, según la cual la corteza superior de nuestro planeta, la litosfera, está dividida en 7 placas o fragmentos mayores y varios menores, que se mueven lentamente sobre un manto llamado astenosfera.

El área más novedosa de la geología es la astrogeología o geología de cuerpos celestes distintos de la tierra, disciplina fundada en 1961 por el geólogo y astrónomo Eugene M. Shoemaker (descubridor también del cometa Shoemaker-Levy 9, que chocó con Júpiter en 1994). En ella, lo que sabemos sobre los materiales que componen la tierra, sus procesos y reacciones, se aplica a lo que podemos observar de otros cuerpos celestes para determinar su composición y posible historia. La aplicación del conocimiento geológico a la superficie de Marte, por ejemplo, es esencial para determinar las posibilidades de que este planeta haya albergado vida en un pasado lejano.

La astrogeología demuestra que lo que ha ocurrido en nuestro planeta es consistente con lo que vamos descubriendo del resto del universo a nuestro alrededor mediante observaciones telescópicas y sondas como las enviadas a Marte, los Voyager o el Deep Impact que impactó con el cometa Tempel 1 en julio de 2006. Y el día en que una misión humana finalmente llegue a Marte, seguramente incluirá entre sus integrantes a un geólogo dispuesto a comprender cómo es el planeta rojo y qué fuerzas lo hicieron así.

Lo mucho que falta


El hombre ha viajado al fondo del mar y ha enviado sondas espaciales que ya han abandonado el sistema solar. Pero por cuanto a nuestro planeta, apenas hemos podido penetrar algunos kilómetros en su capa más superficial. La mina más profunda de la Tierra, la "Western Deep Levels", en Sudáfrica, tiene unos 4 kilómetros de profundidad, un rasguño minúsculo en el radio total de nuestro planeta, de unos 6370 kilómetros, y minúsculo incluso para los 100 Km. de espesor que tienen las placas tectónicas de la litosfera.

El conocimiento de lo que ocurre dentro de nuestro planeta se ha obtenido mediante observaciones indirectas, mediciones y cálculos, pero una sonda hacia las capas más profundas del planeta, resolvería numerosas cuestiones pendientes y, seguramente, abriría muchas nuevas interrogantes.

Altibajos del premio Nobel

Codiciados, criticados, dudosos, prestigiosos y a veces desprestigiados, los premios que estableció el inventor de la dinamita siguen siendo centro de atención tres meses al año.

El Museo Nobel en Estocolmo
(foto CC de Holger Ellgaard, vía Wikimedia Commons
Alfred Bernhard Nobel, químico sueco del siglo XIX, bien podía haber sido recordado principalmente como el inventor de la dinamita, como fabricante de armas y quizá, incluso, como hijo del inventor de la madera contrachapada. La dinamita original, el gran descubrimiento del químico nativo de Estocolmo, no es sino la mezcla de la nitroglicerina, explosivo altamente inestable, con tierras diatomáceas (es decir, arcilla con alto contenido de diatomeas, un tipo de algas unicelulares) que tienen la propiedad de estabilizar la nitroglicerina y volver más seguro y sencillo su manejo, transporte y aplicación. La adición posterior de otras sustancias y un conocimiento sólido de los explosivos traducido en más de 500 patentes que explotaba en sus propias fábricas le permitieron amasar una cuantiosa fortuna.

Pero hoy Nobel es más conocido por los premios que llevan su nombre. La leyenda cuenta que un diario francés recibió la noticia de la muerte del hermano de Alfred Nobel en 1888 y, creyendo que el fallecido era Alfred, la anunció con el titular "El mercader de la muerte ha muerto", agregando que el químico se había hecho rico encontrando formas de matar más gente más rápidamente que nadie en la historia. Esta visión de su obra y de la memoria que dejaría le afectó profundamente, y por ello decidió dejar la mayor parte de su fortuna en un fideicomiso para la entrega anual de un premio destinado a reconocer trabajos destacados en cinco áreas de la actividad humana: la física, la química, la medicina o la fisiología, la literatura y la promoción de la paz. El dinero que inició los premios era algo más de 4 millones de dólares de 1896, una verdadera fortuna a precios de hoy.

Sin embargo, el premio que empezó a concederse finalmente en 1901, cinco años después de la muerte de su fundador estuvo desde sus inicios sujeto a debates. El testamento de Nobel era bastante general, sólo una página, y dejaba algunos puntos en la oscuridad que han sido debatidos durante ya 105 años. Por ejemplo, Alfred Nobel no dejó claro si los premios de ciencia debían otorgarse sólo a la investigación pura o si pensaba también en la tecnología, pensando no sólo en galardonar a investigadores científicos, sino también a ingenieros y tecnólogos. Esta duda ha llevado a que, si bien no se premian los logros tecnológicos, tampoco se otorga el premio a los logros de ciencia pura, por grandes que sean, sino que se dedican a descubrimientos con alguna aplicación práctica. Precisamente por eso, Albert Einstein no recibió el Nobel por la teoría de la relatividad que revolucionó nuestra forma de ver el universo, sino por su más humilde descubrimiento del efecto fotoeléctrico que se aplica incluso en cosas tan cotidianas como las puertas de los ascensores.

En el caso de la literatura, la situación era aún más vaga por cuanto que Nobel hablaba de obras "idealistas", y esto se ha interpretó primero como un "idealismo" filosófico (opuesto al materialismo), aunque después se ha considerado el "idealismo" como "compromiso con los ideales", lo que ha permitido premiar a otro tipo de autores. Nobel hablaba de dar el premio por una sola obra especialmente influyente del año anterior, la Academia Sueca ha optado generalmente por distinguir el trabajo de toda una vida y no sólo un libro. Aún así, las exclusiones de personajes clave como León Tolstoi y Jorge Luis Borges han incidido en la credibilidad de los premios. Por su parte, el premio Nobel de economía instituido en 1969 y único que se otorga por un comité noruego, ha sido incluso más debatido, y los herederos de Nobel consiguieron que desde 2001 se llamara "en memoria de Alfred Nobel", distinguiéndolo así de los premios instituidos por su antecesor.

Pero, si bien como asunto humano sería casi imposible que el Premio Nobel no estuviera sujeto a todas las fragilidades de nuestra especie, incluidos los odios y aprecios personales, la política y las presiones individuales e institucionales, entre otros, ello no ha obstado para que el premio siga siendo considerado el más alto galardón en sus especialidades, y que incluso la presión social y mediática sobre los comités encargados de concederlos hayan permitido enderezar el curso en más de una ocasión.

El 10 de diciembre de 2006 será la ceremonia de entrega de los premios de este año.

Física: John C. Mather y George F. Smoot, cuyos descubrimientos acerca de la radiación de fondo que tiene nuestro universo permitieron consolidar la teoría del Big Bang como origen del universo.

Química: Roger D. Kornberg, por su trabajo sobre las bases moleculares que permiten que los genes que forman el ADN se comuniquen con el exterior del núcleo para la creación de proteínas y la realización de funciones celulares.

Medicina y fisiología: Andrew Z. Fire y Craig C. Mello, por su descubrimiento de la interferencia del ARN, uno de los mecanismos que controlan el flujo de información genética dentro de la célula desactivando genes específicos.

Literatura: Orhan Pamuk, por sus obras en las que se descubren "nuevos símbolos del choque y entrelazamiento de culturas".

Paz: Muhammad Yunus y el banco Grameen, en reconocimiento sus esfuerzos por crear desarrollo económico "desde abajo" al haber creado los microcréditos como forma de lucha contra la pobreza.

Economía: Edmund S. Phelps, por su trabajo sobre la curva de Phillips (la relación inversamente proporcional entre la inflación y el desempleo), la dinámica del desempleo a corto plazo y el concepto de la tasa natural de desempleo.

Los que lo rechazaron


Sólo dos personas han rechazado voluntariamente el Premio Nobel que les fuera concedido. El filósofo existencialista y escritor Jean-Paul Sartre se negó a recibir el premio de literatura que le fue concedido en 1964, argumentando que siempre había rechazado los honores oficiales. El líder Le Duc Tho, representante de Vietnam del Norte en las pláticas con Henry Kissinger que llevaron a los acuerdos de paz de 1973 en la guerra de Vietnam se negó a recibir el premio junto con Kissinger porque, pese a los acuerdos, en su país aún no había paz.

Pero otros lo han rechazado presionados por sus respectivos gobiernos. El nazismo impidió a los investigadores Richard Kuhn, Adolf Butenandt y Gerhard Domagk recibir oportunamente los premios de química y medicina en 1938 y 1939, e hizo lo mismo para que Otto Heinrich Warburg no recibiera su segundo premio Nobel de medicina (el primero lo obtuvo en 1931). Por su parte, el escritor ruso Boris Pasternak fue obligado por las autoridades soviéticas a rechazar el premio de literatura de 1958.